• DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies.

      Vehmeijer, Florianne O L; Küpers, Leanne K; Sharp, Gemma C; Salas, Lucas A; Lent, Samantha; Jima, Dereje D; Tindula, Gwen; Reese, Sarah; Qi, Cancan; Gruzieva, Olena; et al. (BMC, 2020-11-25)
      DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7).
    • Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study.

      Hoang, Thanh T; Sikdar, Sinjini; Xu, Cheng-Jian; Lee, Mi Kyeong; Cardwell, Jonathan; Forno, Erick; Imboden, Medea; Jeong, Ayoung; Madore, Anne-Marie; Qi, Cancan; et al. (European Respiratory Society (ERS), 2020-09-03)
      Epigenome-wide studies of methylation in children support a role for epigenetic mechanisms in asthma; however, studies in adults are rare and few have examined non-atopic asthma. We conducted the largest epigenome-wide association study (EWAS) of blood DNA methylation in adults in relation to non-atopic and atopic asthma.We measured DNA methylation in blood using the Illumina MethylationEPIC array among 2286 participants in a case-control study of current adult asthma nested within a United States agricultural cohort. Atopy was defined by serum specific immunoglobulin E (IgE). Participants were categorised as atopy without asthma (n=185), non-atopic asthma (n=673), atopic asthma (n=271), or a reference group of neither atopy nor asthma (n=1157). Analyses were conducted using logistic regression.No associations were observed with atopy without asthma. Numerous cytosine-phosphate-guanine (CpG) sites were differentially methylated in non-atopic asthma (eight at family-wise error rate (FWER) p<9×10-8, 524 at false discovery rate (FDR) less than 0.05) and implicated 382 novel genes. More CpG sites were identified in atopic asthma (181 at FWER, 1086 at FDR) and implicated 569 novel genes. 104 FDR CpG sites overlapped. 35% of CpG sites in non-atopic asthma and 91% in atopic asthma replicated in studies of whole blood, eosinophils, airway epithelium, or nasal epithelium. Implicated genes were enriched in pathways related to the nervous system or inflammation.We identified numerous, distinct differentially methylated CpG sites in non-atopic and atopic asthma. Many CpG sites from blood replicated in asthma-relevant tissues. These circulating biomarkers reflect risk and sequelae of disease, as well as implicate novel genes associated with non-atopic and atopic asthma.
    • Nasal DNA methylation profiling of asthma and rhinitis.

      Qi, Cancan; Jiang, Yale; Yang, Ivana V; Forno, Erick; Wang, Ting; Vonk, Judith M; Gehring, Ulrike; Smit, Henriëtte A; Milanzi, Edith B; Carpaij, Orestes A; et al. (2020-01-14)
    • The role of epigenetics in the development of childhood asthma.

      Qi, Cancan; Xu, Cheng-Jian; Koppelman, Gerard H; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2019-11-10)
      Introduction: The development of childhood asthma is caused by a combination of genetic factors and environmental exposures. Epigenetics describes mechanisms of (heritable) regulation of gene expression that occur without changes in DNA sequence. Epigenetics is strongly related to aging, is cell-type specific, and includes DNA methylation, noncoding RNAs, and histone modifications.Areas covered: This review summarizes recent epigenetic studies of childhood asthma in humans, which mostly involve studies of DNA methylation published in the recent five years. Environmental exposures, in particular cigarette smoking, have significant impact on epigenetic changes, but few of these epigenetic signals are also associated with asthma. Several asthma-associated genetic variants relate to DNA methylation. Epigenetic signals can be better understood by studying their correlation with gene expression, which revealed higher presence and activation of blood eosinophils in asthma. Strong associations of nasal methylation signatures and atopic asthma were identified, which were replicable across different populations.Expert commentary: Epigenetic markers have been strongly associated with asthma, and might serve as biomarker of asthma. The causal and longitudinal relationships between epigenetics and disease, and between environmental exposures and epigenetic changes need to be further investigated. Efforts should be made to understand cell-type-specific epigenetic mechanisms in asthma.