• DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies.

      Vehmeijer, Florianne O L; Küpers, Leanne K; Sharp, Gemma C; Salas, Lucas A; Lent, Samantha; Jima, Dereje D; Tindula, Gwen; Reese, Sarah; Qi, Cancan; Gruzieva, Olena; et al. (BMC, 2020-11-25)
      DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7).
    • Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study.

      Hoang, Thanh T; Sikdar, Sinjini; Xu, Cheng-Jian; Lee, Mi Kyeong; Cardwell, Jonathan; Forno, Erick; Imboden, Medea; Jeong, Ayoung; Madore, Anne-Marie; Qi, Cancan; et al. (European Respiratory Society (ERS), 2020-09-03)
      Epigenome-wide studies of methylation in children support a role for epigenetic mechanisms in asthma; however, studies in adults are rare and few have examined non-atopic asthma. We conducted the largest epigenome-wide association study (EWAS) of blood DNA methylation in adults in relation to non-atopic and atopic asthma.We measured DNA methylation in blood using the Illumina MethylationEPIC array among 2286 participants in a case-control study of current adult asthma nested within a United States agricultural cohort. Atopy was defined by serum specific immunoglobulin E (IgE). Participants were categorised as atopy without asthma (n=185), non-atopic asthma (n=673), atopic asthma (n=271), or a reference group of neither atopy nor asthma (n=1157). Analyses were conducted using logistic regression.No associations were observed with atopy without asthma. Numerous cytosine-phosphate-guanine (CpG) sites were differentially methylated in non-atopic asthma (eight at family-wise error rate (FWER) p<9×10-8, 524 at false discovery rate (FDR) less than 0.05) and implicated 382 novel genes. More CpG sites were identified in atopic asthma (181 at FWER, 1086 at FDR) and implicated 569 novel genes. 104 FDR CpG sites overlapped. 35% of CpG sites in non-atopic asthma and 91% in atopic asthma replicated in studies of whole blood, eosinophils, airway epithelium, or nasal epithelium. Implicated genes were enriched in pathways related to the nervous system or inflammation.We identified numerous, distinct differentially methylated CpG sites in non-atopic and atopic asthma. Many CpG sites from blood replicated in asthma-relevant tissues. These circulating biomarkers reflect risk and sequelae of disease, as well as implicate novel genes associated with non-atopic and atopic asthma.
    • Evolution of cytokine production capacity in ancient and modern European populations.

      Domínguez-Andrés, Jorge; Kuijpers, Yunus; Bakker, Olivier B; Jaeger, Martin; Xu, Cheng-Jian; Van der Meer, Jos Wm; Jakobsson, Mattias; Bertranpetit, Jaume; Joosten, Leo Ab; Li, Yang; et al. (eLife Sciences Publications, 2021-09-07)
      As our ancestors migrated throughout different continents, natural selection increased the presence of alleles advantageous in the new environments. Heritable variations that alter the susceptibility to diseases vary with the historical period, the virulence of the infections, and their geographical spread. In this study we built polygenic scores for heritable traits that influence the genetic adaptation in the production of cytokines and immune-mediated disorders, including infectious, inflammatory, and autoimmune diseases, and applied them to the genomes of several ancient European populations. We observed that the advent of the Neolithic was a turning point for immune-mediated traits in Europeans, favoring those alleles linked with the development of tolerance against intracellular pathogens and promoting inflammatory responses against extracellular microbes. These evolutionary patterns are also associated with an increased presence of traits related to inflammatory and auto-immune diseases.
    • Integration of metabolomics, genomics, and immune phenotypes reveals the causal roles of metabolites in disease.

      Chu, Xiaojing; Jaeger, Martin; Beumer, Joep; Bakker, Olivier B; Aguirre-Gamboa, Raul; Oosting, Marije; Smeekens, Sanne P; Moorlag, Simone; Mourits, Vera P; Koeken, Valerie A C M; et al. (BMC, 2021-07-06)
      Background: Recent studies highlight the role of metabolites in immune diseases, but it remains unknown how much of this effect is driven by genetic and non-genetic host factors. Result: We systematically investigate circulating metabolites in a cohort of 500 healthy subjects (500FG) in whom immune function and activity are deeply measured and whose genetics are profiled. Our data reveal that several major metabolic pathways, including the alanine/glutamate pathway and the arachidonic acid pathway, have a strong impact on cytokine production in response to ex vivo stimulation. We also examine the genetic regulation of metabolites associated with immune phenotypes through genome-wide association analysis and identify 29 significant loci, including eight novel independent loci. Of these, one locus (rs174584-FADS2) associated with arachidonic acid metabolism is causally associated with Crohn's disease, suggesting it is a potential therapeutic target. Conclusion: This study provides a comprehensive map of the integration between the blood metabolome and immune phenotypes, reveals novel genetic factors that regulate blood metabolite concentrations, and proposes an integrative approach for identifying new disease treatment targets.
    • Multi-omics examination of Q fever fatigue syndrome identifies similarities with chronic fatigue syndrome.

      Raijmakers, Ruud P H; Roerink, Megan E; Jansen, Anne F M; Keijmel, Stephan P; Gacesa, Ranko; Li, Yang; Joosten, Leo A B; van der Meer, Jos W M; Netea, Mihai G; Bleeker-Rovers, Chantal P; et al. (BMC, 2020-11-26)
      Inflammatory markers, including 4E-BP1 (P = 9.60-16 and 1.41-7) and MMP-1 (P = 7.09-9 and 3.51-9), are significantly more expressed in both QFS and CFS patients compared to HC. Blood metabolite profiles show significant differences when comparing QFS (319 metabolites) and CFS (441 metabolites) patients to HC, and are significantly enriched in pathways like sphingolipid (P = 0.0256 and 0.0033) metabolism. When comparing QFS to CFS patients, almost no significant differences in metabolome were found. Comparison of microbiome taxonomy of QFS and CFS patients with that of HC, shows both in- and decreases in abundancies in Bacteroidetes (with emphasis on Bacteroides and Alistiples spp.), and Firmicutes and Actinobacteria (with emphasis on Ruminococcus and Bifidobacterium spp.). When we compare QFS patients to CFS patients, there is a striking resemblance and hardly any significant differences in microbiome taxonomy are found.
    • Nasal DNA methylation profiling of asthma and rhinitis.

      Qi, Cancan; Jiang, Yale; Yang, Ivana V; Forno, Erick; Wang, Ting; Vonk, Judith M; Gehring, Ulrike; Smit, Henriëtte A; Milanzi, Edith B; Carpaij, Orestes A; et al. (2020-01-14)
    • The role of epigenetics in the development of childhood asthma.

      Qi, Cancan; Xu, Cheng-Jian; Koppelman, Gerard H; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2019-11-10)
      Introduction: The development of childhood asthma is caused by a combination of genetic factors and environmental exposures. Epigenetics describes mechanisms of (heritable) regulation of gene expression that occur without changes in DNA sequence. Epigenetics is strongly related to aging, is cell-type specific, and includes DNA methylation, noncoding RNAs, and histone modifications.Areas covered: This review summarizes recent epigenetic studies of childhood asthma in humans, which mostly involve studies of DNA methylation published in the recent five years. Environmental exposures, in particular cigarette smoking, have significant impact on epigenetic changes, but few of these epigenetic signals are also associated with asthma. Several asthma-associated genetic variants relate to DNA methylation. Epigenetic signals can be better understood by studying their correlation with gene expression, which revealed higher presence and activation of blood eosinophils in asthma. Strong associations of nasal methylation signatures and atopic asthma were identified, which were replicable across different populations.Expert commentary: Epigenetic markers have been strongly associated with asthma, and might serve as biomarker of asthma. The causal and longitudinal relationships between epigenetics and disease, and between environmental exposures and epigenetic changes need to be further investigated. Efforts should be made to understand cell-type-specific epigenetic mechanisms in asthma.