• Chemically Engineered Immune Cell-Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools

      Jahromi, Leila Pourtalebi; Shahbazi, Mohammad Ali; Maleki, Aziz; Azadi, Amir; Santos, Hélder A.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-VCH, 2021-01-01)
      Over the past decades, considerable attention has been dedicated to the exploitation of diverse immune cells as therapeutic and/or diagnostic cell‐based microrobots for hard‐to‐treat disorders. To date, a plethora of therapeutics based on alive immune cells, surface‐engineered immune cells, immunocytes’ cell membranes, leukocyte‐derived extracellular vesicles or exosomes, and artificial immune cells have been investigated and a few have been introduced into the market. These systems take advantage of the unique characteristics and functions of immune cells, including their presence in circulating blood and various tissues, complex crosstalk properties, high affinity to different self and foreign markers, unique potential of their on‐demand navigation and activity, production of a variety of chemokines/cytokines, as well as being cytotoxic in particular conditions. Here, the latest progress in the development of engineered therapeutics and diagnostics inspired by immune cells to ameliorate cancer, inflammatory conditions, autoimmune diseases, neurodegenerative disorders, cardiovascular complications, and infectious diseases is reviewed, and finally, the perspective for their clinical application is delineated.
    • Clarithromycin impairs tissue-resident memory and Th17 responses to macrolide-resistant Streptococcus pneumoniae infections.

      Lindenberg, Marc; Almeida, Luis; Dhillon-LaBrooy, Ayesha; Siegel, Ekkehard; Henriques-Normark, Birgitta; Sparwasser, Tim; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Springer, 2021-02-17)
      The increasing prevalence of antimicrobial resistance in pathogens is a growing public health concern, with the potential to compromise the success of infectious disease treatments in the future. Particularly, the number of infections by macrolide antibiotics-resistant Streptococcus pneumoniae is increasing. We show here that Clarithromycin impairs both the frequencies and number of interleukin (IL)-17 producing T helper (Th) 17 cells within the lungs of mice infected with a macrolide-resistant S. pneumoniae serotype 15A strain. Subsequently, the tissue-resident memory CD4+ T cell (Trm) response to a consecutive S. pneumoniae infection was impaired. The number of lung resident IL-17+ CD69+ Trm was diminished upon Clarithromycin treatment during reinfection. Mechanistically, Clarithromycin attenuated phosphorylation of the p90-S6-kinase as part of the ERK pathway in Th17 cells. Moreover, a strong increase in the mitochondrial-mediated maximal respiratory capacity was observed, while mitochondrial protein translation and mTOR sisgnaling were unimpaired. Therefore, treatment with macrolide antibiotics may favor the spread of antimicrobial-resistant pathogens not only by applying a selection pressure but also by decreasing the natural T cell immune response. Clinical administration of macrolide antibiotics as standard therapy procedure during initial hospitalization should be reconsidered accordingly and possibly be withheld until microbial resistance is determined. KEY MESSAGES: • Macrolide-resistant S. pneumoniae infection undergoes immunomodulation by Clarithromycin • Clarithromycin treatment hinders Th17 and tissue-resident memory responses • Macrolide antibiotics impair Th17 differentiation in vitro by ERK-pathway inhibition.
    • Selective Host Cell Death by Staphylococcus aureus : A Strategy for Bacterial Persistence.

      Missiakas, Dominique; Winstel, Volker; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Frontiers, 2021-01-21)
      Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.
    • Regulatory T Cells in an Endogenous Mouse Lymphoma Recognize Specific Antigen Peptides and Contribute to Immune Escape.

      Ahmetlić, Fatima; Riedel, Tanja; Hömberg, Nadine; Bauer, Vera; Trautwein, Nico; Geishauser, Albert; Sparwasser, Tim; Stevanović, Stefan; Röcken, Martin; Mocikat, Ralph; et al. (American Association for Cancer Research (AACR), 2019-03-20)
      Foxp3+ regulatory T cells (Tregs) sustain immune homeostasis and may contribute to immune escape in malignant disease. As a prerequisite for developing immunologic approaches in cancer therapy, it is necessary to understand the ontogeny and the antigenic specificities of tumor-infiltrating Tregs. We addressed this question by using a λ-MYC transgenic mouse model of endogenously arising B-cell lymphoma, which mirrors key features of human Burkitt lymphoma. We show that Foxp3+ Tregs suppress antitumor responses in endogenous lymphoma. Ablation of Foxp3+ Tregs significantly delayed tumor development. The ratio of Treg to effector T cells was elevated in growing tumors, which could be ascribed to differential proliferation. The Tregs detected were mainly natural Tregs that apparently recognized self-antigens. We identified MHC class II-restricted nonmutated self-epitopes, which were more prevalent in lymphoma than in normal B cells and could be recognized by Tregs. These epitopes were derived from proteins that are associated with cellular processes related to malignancy and may be overexpressed in the tumor.
    • Misinterpretation of the odds ratios.

      Fernández, Nathalie; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2020-05-11)
      No abstract available
    • Crystal structure of bacterial cytotoxic necrotizing factor CNFy reveals molecular building blocks for intoxication.

      Chaoprasid, Paweena; Lukat, Peer; Mühlen, Sabrina; Heidler, Thomas; Gazdag, Emerich-Mihai; Dong, Shuangshuang; Bi, Wenjie; Rüter, Christian; Kirchenwitz, Marco; Steffen, Anika; et al. (Springer, 2021-01-07)
      Cytotoxic necrotizing factors (CNFs) are bacterial single-chain exotoxins that modulate cytokinetic/oncogenic and inflammatory processes through activation of host cell Rho GTPases. To achieve this, they are secreted, bind surface receptors to induce endocytosis and translocate a catalytic unit into the cytosol to intoxicate host cells. A three-dimensional structure that provides insight into the underlying mechanisms is still lacking. Here, we determined the crystal structure of full-length Yersinia pseudotuberculosis CNFY . CNFY consists of five domains (D1-D5), and by integrating structural and functional data, we demonstrate that D1-3 act as export and translocation module for the catalytic unit (D4-5) and for a fused β-lactamase reporter protein. We further found that D4, which possesses structural similarity to ADP-ribosyl transferases, but had no equivalent catalytic activity, changed its position to interact extensively with D5 in the crystal structure of the free D4-5 fragment. This liberates D5 from a semi-blocked conformation in full-length CNFY , leading to higher deamidation activity. Finally, we identify CNF translocation modules in several uncharacterized fusion proteins, which suggests their usability as a broad-specificity protein delivery tool.
    • Relevance of inducible nitric oxide synthase for immune control of Mycobacterium avium subspecies paratuberculosis infection in mice.

      Abdissa, Ketema; Ruangkiattikul, Nanthapon; Ahrend, Wiebke; Nerlich, Andreas; Beineke, Andreas; Laarmann, Kristin; Janze, Nina; Lobermeyer, Ulrike; Suwandi, Abdulhadi; Falk, Christine; et al. (Taylor & Francis, 2020-05-14)
      Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease (JD), an incurable chronic intestinal bowel disease in ruminants. JD occurs worldwide and causes enormous economic burden in dairy industry. Research on JD pathobiology is hampered by its complexity which cannot completely be mimicked by small animal models. As a model the mouse allows dissecting some pathogenicity features of MAP. However, for unknown reasons MAP exhibits reduced growth in granulomas of infected mice compared to other Mycobacterium avium subspecies. Here, we characterized immune reactions of MAP-infected C57BL/6 mice. After infection, mice appeared fully immunocompetent. A strong antigen-specific T cell response was elicited indicated by IFNγ production of splenic T cells re-stimulated with MAP antigens. Function of splenic dendritic cells and proliferation of adoptively transferred antigen-specific CD4+ T cells was unaltered. Isolated splenic myeloid cells from infected mice revealed that MAP resides in CD11b+ macrophages. Importantly, sorted CD11b+CD11c- cells expressed high level of type 2 nitric oxide synthase (NOS2) but only low levels of pro- and anti-inflammatory cytokines. Correspondingly, MAP-infected MAC2 expressing myeloid cells in spleen and liver granuloma displayed strong expression of NOS2. In livers of infected Nos2-/-mice higher bacterial loads, more granuloma and larger areas of tissue damage were observed 5 weeks post infection compared to wild type mice. In vitro, MAP was sensitive to NO released by a NO-donor. Thus, a strong T cell response and concomitant NOS2/NO activity appears to control MAP infection, but allows development of chronicity and pathogen persistence. A similar mechanism might explain persistence of MAP in ruminants.
    • HBV evolution and genetic variability: Impact on prevention, treatment and development of antivirals.

      Glebe, Dieter; Goldmann, Nora; Lauber, Chris; Seitz, Stefan; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Elsevier, 2020-11-06)
      Hepatitis B virus (HBV) poses a major global health burden with 260 million people being chronically infected and 890,000 dying annually from complications in the course of the infection. HBV is a small enveloped virus with a reverse-transcribed DNA genome that infects hepatocytes and can cause acute and chronic infections of the liver. HBV is endemic in humans and apes representing the prototype member of the viral family Hepadnaviridae and can be divided into 10 genotypes. Hepadnaviruses have been found in all vertebrate classes and constitute an ancient viral family that descended from non-enveloped progenitors more than 360 million years ago. The de novo emergence of the envelope protein gene was accompanied with the liver-tropism and resulted in a tight virus-host association. The oldest HBV genomes so far have been isolated from human remains of the Bronze Age and the Neolithic (~7000 years before present). Despite the remarkable stability of the hepadnaviral genome over geological eras, HBV is able to rapidly evolve within an infected individual under pressure of the immune response or during antiviral treatment. Treatment with currently available antivirals blocking intracellular replication of HBV allows controlling of high viremia and improving liver health during long-term therapy of patients with chronic hepatitis B (CHB), but they are not sufficient to cure the disease. New therapy options that cover all HBV genotypes and emerging viral variants will have to be developed soon. In addition to the antiviral treatment of chronically infected patients, continued efforts to expand the global coverage of the currently available HBV vaccine will be one of the key factors for controlling the rising global spread of HBV. Certain improvements of the vaccine (e.g. inclusion of PreS domains) could counteract known problems such as low or no responsiveness of certain risk groups and waning anti-HBs titers leading to occult infections, especially with HBV genotypes E or F. But even with an optimal vaccine and a cure for hepatitis B, global eradication of HBV would be difficult to achieve because of an existing viral reservoir in primates and bats carrying closely related hepadnaviruses with zoonotic potential.
    • Recombinant protein production associated growth inhibition results mainly from transcription and not from translation.

      Li, Zhaopeng; Rinas, Ursula; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (BMC (part of Springer), 2020-04-06)
      Background: Recombinant protein production can be stressful to the host organism. The extent of stress is determined by the specific properties of the recombinant transcript and protein, by the rates of transcription and translation, and by the environmental conditions encountered during the production process. Results: The impact of the transcription of the T7-promoter controlled genes encoding human basic fibroblast growth factor (hFGF-2) and green fluorescent protein (GFP) as well as the translation into the recombinant protein on the growth properties of the production host E. coli BL21(DE3) were investigated. This was done by using expression vectors where the promoter region or the ribosome binding site(s) or both were removed. It is shown that already transcription without protein translation imposes a metabolic burden on the host cell. Translation of the transcript into large amounts of a properly folded protein does not show any effect on cell growth in the best case, e.g. high-level production of GFP in Luria-Bertani medium. However, translation appears to contribute to the metabolic burden if it is connected to protein folding associated problems, e.g. inclusion body formation. Conclusion: The so-called metabolic burden of recombinant protein production is mainly attributed to transcription but can be enhanced through translation and those processes following translation (e.g. protein folding and degradation, heat-shock responses).
    • Transcriptome profiling reveals Silibinin dose-dependent response network in non-small lung cancer cells.

      Kaipa, Jagan Mohan; Starkuviene, Vytaute; Erfle, Holger; Eils, Roland; Gladilin, Evgeny; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Peer J, 2020-12-16)
      Silibinin (SIL), a natural flavonolignan from the milk thistle (Silybum marianum), is known to exhibit remarkable hepatoprotective, antineoplastic and EMT inhibiting effects in different cancer cells by targeting multiple molecular targets and pathways. However, the predominant majority of previous studies investigated effects of this phytocompound in a one particular cell line. Here, we carry out a systematic analysis of dose-dependent viability response to SIL in five non-small cell lung cancer (NSCLC) lines that gradually differ with respect to their intrinsic EMT stage. By correlating gene expression profiles of NSCLC cell lines with the pattern of their SIL IC50 response, a group of cell cycle, survival and stress responsive genes, including some prominent targets of STAT3 (BIRC5, FOXM1, BRCA1), was identified. The relevancy of these computationally selected genes to SIL viability response of NSCLC cells was confirmed by the transient knockdown test. In contrast to other EMT-inhibiting compounds, no correlation between the SIL IC50 and the intrinsic EMT stage of NSCLC cells was observed. Our experimental results show that SIL viability response of differently constituted NSCLC cells is linked to a subnetwork of tightly interconnected genes whose transcriptomic pattern can be used as a benchmark for assessment of individual SIL sensitivity instead of the conventional EMT signature. Insights gained in this study pave the way for optimization of customized adjuvant therapy of malignancies using Silibinin.
    • Biogeography and Environmental Drivers of Abundance and Genotype Composition Across the West Bank: Relevance of a Genotype-Based Ecology for Understanding Occurrence.

      Zayed, Ashraf R; Butmeh, Suha; Pecellin, Marina; Salah, Alaa; Alalam, Hanna; Steinert, Michael; Höfle, Manfred G; Bitar, Dina M; Brettar, Ingrid; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-12-01)
      The West Bank can be considered as a high-risk area for Legionella prevalence in drinking water due to high ambient temperature, intermittent water supply, frequent pressure loss, and storage of drinking water in roof containers. To assess occurrence of Legionella species, especially L. pneumophila, in the drinking water of the West Bank, the drinking water distribution systems of eight hospitals were sampled over a period of 2.3 years covering the seasonal cycle and the major geographic regions. To gain insight into potential environmental drivers, a set of physico-chemical and microbiological parameters was recorded. Sampling included drinking water and biofilm analyzed by culture and PCR-based methods. Cultivation led to the isolation of 180 strains of L. pneumophila that were genotyped by Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA). Surprisingly, the abundance of culturable L. pneumophila was low in drinking water of the sampling sites, with only three out of eight sites where Legionella was observed at all (range: 30-500 CFU/liter). By contrast, biofilm and PCR-based analyses showed a higher prevalence. Statistical analyses with physico-chemical parameters revealed a decrease of L. pneumophila abundance for water and biofilm with increasing magnesium concentrations (>30 mg/l). MLVA-genotype analysis of the L. pneumophila isolates and their spatial distribution indicated three niches characterized by distinct physico-chemical parameters and inhabited by specific consortia of genotypes. This study provides novel insights into mechanisms shaping L. pneumophila populations and triggering their abundance leading to an understanding of their genotype-specific niches and ecology in support of improved prevention measures.
    • Corallopyronin A for short-course anti-wolbachial, macrofilaricidal treatment of filarial infections.

      Schiefer, Andrea; Hübner, Marc P; Krome, Anna; Lämmer, Christine; Ehrens, Alexandra; Aden, Tilman; Koschel, Marianne; Neufeld, Helene; Chaverra-Muñoz, Lillibeth; Jansen, Rolf; et al. (PLOS, 2020-12-07)
      Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal-adult-worm killing-treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4-5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti-Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti-Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti-Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug.
    • DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies.

      Vehmeijer, Florianne O L; Küpers, Leanne K; Sharp, Gemma C; Salas, Lucas A; Lent, Samantha; Jima, Dereje D; Tindula, Gwen; Reese, Sarah; Qi, Cancan; Gruzieva, Olena; et al. (BMC, 2020-11-25)
      DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7).
    • Multi-omics examination of Q fever fatigue syndrome identifies similarities with chronic fatigue syndrome.

      Raijmakers, Ruud P H; Roerink, Megan E; Jansen, Anne F M; Keijmel, Stephan P; Gacesa, Ranko; Li, Yang; Joosten, Leo A B; van der Meer, Jos W M; Netea, Mihai G; Bleeker-Rovers, Chantal P; et al. (BMC, 2020-11-26)
      Inflammatory markers, including 4E-BP1 (P = 9.60-16 and 1.41-7) and MMP-1 (P = 7.09-9 and 3.51-9), are significantly more expressed in both QFS and CFS patients compared to HC. Blood metabolite profiles show significant differences when comparing QFS (319 metabolites) and CFS (441 metabolites) patients to HC, and are significantly enriched in pathways like sphingolipid (P = 0.0256 and 0.0033) metabolism. When comparing QFS to CFS patients, almost no significant differences in metabolome were found. Comparison of microbiome taxonomy of QFS and CFS patients with that of HC, shows both in- and decreases in abundancies in Bacteroidetes (with emphasis on Bacteroides and Alistiples spp.), and Firmicutes and Actinobacteria (with emphasis on Ruminococcus and Bifidobacterium spp.). When we compare QFS patients to CFS patients, there is a striking resemblance and hardly any significant differences in microbiome taxonomy are found.
    • Solubility and Stability Enhanced Oral Formulations for the Anti-Infective Corallopyronin A.

      Krome, Anna K; Becker, Tim; Kehraus, Stefan; Schiefer, Andrea; Steinebach, Christian; Aden, Tilman; Frohberger, Stefan J; López Mármol, Álvaro; Kapote, Dnyaneshwar; Jansen, Rolf; et al. (MDPI, 2020-11-18)
      Novel-antibiotics are urgently needed to combat an increase in morbidity and mortality due to resistant bacteria. The preclinical candidate corallopyronin A (CorA) is a potent antibiotic against Gram-positive and some Gram-negative pathogens for which a solid oral formulation was needed for further preclinical testing of the active pharmaceutical ingredient (API). The neat API CorA is poorly water-soluble and instable at room temperature, both crucial characteristics to be addressed and overcome for use as an oral antibiotic. Therefore, amorphous solid dispersion (ASD) was chosen as formulation principle. The formulations were prepared by spray-drying, comprising the water-soluble polymers povidone and copovidone. Stability (high-performance liquid chromatography, Fourier-transform-infrared spectroscopy, differential scanning calorimetry), dissolution (biphasic dissolution), and solubility (biphasic dissolution, Pion's T3 apparatus) properties were analyzed. Pharmacokinetic evaluations after intravenous and oral administration were conducted in BALB/c mice. The results demonstrated that the ASD formulation principle is a suitable stability- and solubility-enhancing oral formulation strategy for the API CorA to be used in preclinical and clinical trials and as a potential market product.
    • Cholesterol sensing by CD81 is important for hepatitis C virus entry.

      Palor, Machaela; Stejskal, Lenka; Mandal, Piya; Lenman, Annasara; Alberione, Maria Pia; Kirui, Jared; Moeller, Rebecca; Ebner, Stefan; Meissner, Felix; Gerold, Gisa; et al. (DeGruyter, 2020-09-08)
      CD81 plays a role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus. Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81-cholesterol association, but had disparate effects on HCV, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified an allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol unbound) or closed (cholesterol bound) conformation. The open mutant of CD81 exhibited reduced receptor activity whereas the closed mutant was enhanced. These data are consistent with cholesterol switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81-partner networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry and CD81's function as a molecular scaffold; these insights are relevant to CD81's varied roles in health and disease.
    • MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma.

      Komoll, Ronja-Melinda; Hu, Qingluan; Olarewaju, Olaniyi; von Döhlen, Lena; Yuan, Qinggong; Xie, Yu; Tsay, Hsin-Chieh; Daon, Joel; Qin, Renyi; Manns, Michael P; et al. (Elsevier, 2020-07-30)
      Background & aims: Hepatocellular carcinoma (HCC) is a cancer with multiple aetiologies and widespread prevalence. Largely refractory to current treatments, HCC is the fourth leading cause of cancer-related deaths worldwide. MicroRNAs (miRNAs) are important regulators in HCCs. We aimed to identify tumour suppressor miRNAs during tumour regression in a conditional c-MYC-driven mouse model (LT2/MYC) of HCC, and to evaluate their therapeutic potential for HCC treatment. Methods: We performed miRNA expression profiling of developed and regressing LT2/MYC tumours and in-depth in vitro gain- and loss-of-function analyses. The effect of adeno-associated virus (AAV) vector-mediated miR-342-3p treatment was evaluated in 3 HCC mouse models. Results: We identified miR-342-3p as a tumour suppressor miRNA in HCC, with increased expression in regressing tumours. Forced miR-342-3p expression in hepatoma cells showed significantly decreased cell proliferation, migration, and colony formation. In vivo administration of AAV-miR-342-3p led to significant attenuation of tumour development and increased overall survival. We identified monocarboxylic acid transporter 1 (MCT1) as a bona fide target of miR-342-3p in HCC. We show that the tumour suppressor role of miR-342-3p is executed partly by modulating the lactate transport function of MCT1. Importantly, we find miR-342-3p downregulated in tumours from patients with HCC compared with matched non-tumour tissues, inversely correlating with MCT1 expression. We observed similar findings in TCGA-LIHC data. Conclusions: In our study, we identified and validated miR-342-3p as a tumour suppressor miRNA in HCC. We demonstrated its therapeutic efficacy in significantly attenuating tumour development, and prolonging survival, in different HCC mouse models. Identification of miR-342-3p as an effective tumour suppressor opens a therapeutic avenue for miRNA-mediated attenuation of HCC development. Lay summary: Hepatocellular carcinoma (HCC), the most common type of liver cancer, affects diverse populations and has a global impact, being the fourth leading cause of cancer deaths worldwide. There are currently no systemic therapies for HCC that can significantly prolong long-term survival. Thus, novel effective treatment options are urgently required. To understand the molecular basis of tumour regression, we compared tumours and regressing liver tumours in mice. We show that a small non-coding miRNA, miR-342-3p, is a tumour suppressor in HCC. Expression of miR-342-3p is low in tumours and high in regressing tumours. When miR-342-3p is delivered to mouse livers with HCC, it can significantly slow down liver tumour development and improve survival. Our study highlights the promising therapeutic potential of miR-342-3p intervention in HCC.
    • Impact of process temperature and organic loading rate on cellulolytic/hydrolytic biofilm microbiomes during biomethanation of ryegrass silage revealed by genome-centered metagenomics and metatranscriptomics

      Maus, Irena; Klocke, Michael; Derenkó, Jaqueline; Stolze, Yvonne; Beckstette, Michael; Jost, Carsten; Wibberg, Daniel; Blom, Jochen; Henke, Christian; Willenbücher, Katharina; et al. (BMC, 2020-03-02)
      Background: Anaerobic digestion (AD) of protein-rich grass silage was performed in experimental two-stage twophase biogas reactor systems at low vs. increased organic loading rates (OLRs) under mesophilic (37 °C) and thermophilic (55 °C) temperatures. To follow the adaptive response of the biomass-attached cellulolytic/hydrolytic biofilms at increasing ammonium/ammonia contents, genome-centered metagenomics and transcriptional profiling based on metagenome assembled genomes (MAGs) were conducted. Results: In total, 78 bacterial and archaeal MAGs representing the most abundant members of the communities, and featuring defined quality criteria were selected and characterized in detail. Determination of MAG abundances under the tested conditions by mapping of the obtained metagenome sequence reads to the MAGs revealed that MAG abundance profiles were mainly shaped by the temperature but also by the OLR. However, the OLR effect was more pronounced for the mesophilic systems as compared to the thermophilic ones. In contrast, metatranscriptome mapping to MAGs subsequently normalized to MAG abundances showed that under thermophilic conditions, MAGs respond to increased OLRs by shifting their transcriptional activities mainly without adjusting their proliferation rates. This is a clear difference compared to the behavior of the microbiome under mesophilic conditions. Here, the response to increased OLRs involved adjusting of proliferation rates and corresponding transcriptional activities. The analysis led to the identification of MAGs positively responding to increased OLRs. The most outstanding MAGs in this regard, obviously well adapted to higher OLRs and/or associated conditions, were assigned to the order Clostridiales (Acetivibrio sp.) for the mesophilic biofilm and the orders Bacteroidales (Prevotella sp. and an unknown species), Lachnospirales (Herbinix sp. and Kineothrix sp.) and Clostridiales (Clostridium sp.) for the thermophilic biofilm. Genome-based metabolic reconstruction and transcriptional profiling revealed that positively responding MAGs mainly are involved in hydrolysis of grass silage, acidogenesis and / or acetogenesis. Conclusions: An integrated -omics approach enabled the identification of new AD biofilm keystone species featuring outstanding performance under stress conditions such as increased OLRs. Genome-based knowledge on the metabolic potential and transcriptional activity of responsive microbiome members will contribute to the development of improved microbiological AD management strategies for biomethanation of renewable biomass. Keywords: Metagenome assembled genomes, Integrated -omics, Polyomics, Anaerobic digestion, Biogas, Bioconversion, Microbial community structure, Methane, Metabolic activity
    • MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma

      Komoll, Ronja Melinda; Hu, Qingluan; Olarewaju, Olaniyi; von Döhlen, Lena; Yuan, Qinggong; Xie, Yu; Tsay, Hsin Chieh; Daon, Joel; Qin, Renyi; Manns, Michael P.; et al. (2021-01-01)
      Background & aims: Hepatocellular carcinoma (HCC) is a cancer with multiple aetiologies and widespread prevalence. Largely refractory to current treatments, HCC is the fourth leading cause of cancer-related deaths worldwide. MicroRNAs (miRNAs) are important regulators in HCCs. We aimed to identify tumour suppressor miRNAs during tumour regression in a conditional c-MYC-driven mouse model (LT2/MYC) of HCC, and to evaluate their therapeutic potential for HCC treatment. Methods: We performed miRNA expression profiling of developed and regressing LT2/MYC tumours and in-depth in vitro gain- and loss-of-function analyses. The effect of adeno-associated virus (AAV) vector-mediated miR-342-3p treatment was evaluated in 3 HCC mouse models. Results: We identified miR-342-3p as a tumour suppressor miRNA in HCC, with increased expression in regressing tumours. Forced miR-342-3p expression in hepatoma cells showed significantly decreased cell proliferation, migration, and colony formation. In vivo administration of AAV-miR-342-3p led to significant attenuation of tumour development and increased overall survival. We identified monocarboxylic acid transporter 1 (MCT1) as a bona fide target of miR-342-3p in HCC. We show that the tumour suppressor role of miR-342-3p is executed partly by modulating the lactate transport function of MCT1. Importantly, we find miR-342-3p downregulated in tumours from patients with HCC compared with matched non-tumour tissues, inversely correlating with MCT1 expression. We observed similar findings in TCGA-LIHC data. Conclusions: In our study, we identified and validated miR-342-3p as a tumour suppressor miRNA in HCC. We demonstrated its therapeutic efficacy in significantly attenuating tumour development, and prolonging survival, in different HCC mouse models. Identification of miR-342-3p as an effective tumour suppressor opens a therapeutic avenue for miRNA-mediated attenuation of HCC development. Lay summary: Hepatocellular carcinoma (HCC), the most common type of liver cancer, affects diverse populations and has a global impact, being the fourth leading cause of cancer deaths worldwide. There are currently no systemic therapies for HCC that can significantly prolong long-term survival. Thus, novel effective treatment options are urgently required. To understand the molecular basis of tumour regression, we compared tumours and regressing liver tumours in mice. We show that a small non-coding miRNA, miR-342-3p, is a tumour suppressor in HCC. Expression of miR-342-3p is low in tumours and high in regressing tumours. When miR-342-3p is delivered to mouse livers with HCC, it can significantly slow down liver tumour development and improve survival. Our study highlights the promising therapeutic potential of miR-342-3p intervention in HCC.
    • Synthetic rewiring and boosting type I interferon responses for visualization and counteracting viral infections.

      Gödecke, Natascha; Riedel, Jan; Herrmann, Sabrina; Behme, Sara; Rand, Ulfert; Kubsch, Tobias; Cicin-Sain, Luka; Hauser, Hansjörg; Köster, Mario; Wirth, Dagmar; et al. (Oxford Academic, 2020-11-18)
      Mammalian first line of defense against viruses is accomplished by the interferon (IFN) system. Viruses have evolved numerous mechanisms to reduce the IFN action allowing them to invade the host and/or to establish latency. We generated an IFN responsive intracellular hub by integrating the synthetic transactivator tTA into the chromosomal Mx2 locus for IFN-based activation of tTA dependent expression modules. The additional implementation of a synthetic amplifier module with positive feedback even allowed for monitoring and reacting to infections of viruses that can antagonize the IFN system. Low and transient IFN amounts are sufficient to trigger these amplifier cells. This gives rise to higher and sustained-but optionally de-activatable-expression even when the initial stimulus has faded out. Amplification of the IFN response induced by IFN suppressing viruses is sufficient to protect cells from infection. Together, this interfaced sensor/actuator system provides a toolbox for robust sensing and counteracting viral infections.