• New lineage of filamentous, spore-forming, gram-positive bacteria from soil.

      Cavaletti, Linda; Monciardini, Paolo; Bamonte, Ruggiero; Schumann, Peter; Rohde, Manfred; Sosio, Margherita; Donadio, Stefano; Vicuron Pharmaceuticals, 21040 Gerenzano, Italy. (2006-06)
      A novel bacterial strain that was isolated from an Italian soil and was designated SOSP1-21T forms branched mycelia in solid and liquid media and has a filamentous morphology similar to that of some genera belonging to the Actinobacteria. Electron microscopy showed that this organism has a grape-like appearance, resulting from interlacing of spores originating from sporophoric hyphae. Ten strains that are morphologically related to SOSP1-21T were recovered from soil. Phylogenetic analyses of 16S rRNA gene segments confirmed the relatedness of these strains to SOSP1-21T and indicated that the newly isolated strains form separate clades in a deeply branching lineage. The closest matches for the 16S rRNA sequences of all the strains (around 79% identity) were matches with representatives of the Chloroflexi, although the affiliation with this division was not supported by high bootstrap values. The strains are mesophilic aerobic heterotrophs and are also capable of growing under microaerophilic conditions. They all stain gram positive. Strain SOSP1-21T contains ornithine, alanine, glutamic acid, serine, and glycine as the peptidoglycan amino acids. In addition, an unusual level of C16:1 2OH (30%) was found in the cellular fatty acids. The G+C content of SOSP1-21T genomic DNA is 53.9%, and MK-9(H2) was the only menaquinone detected. All these data suggest that SOSP1-21T and the related strains may constitute a new division of filamentous, spore-forming, gram-positive bacteria. We propose the name Ktedobacter racemifer gen. nov., sp. nov. for strain SOSP1-21T.
    • [Reaction of microorganisms to the digestive fluid of the earthworms]

      Khomiakov, N V; Kharin, S A; Nechitaĭlo, T Iu; Golyshin, P N; Kurakov, A V; Byzov, B A; Zviagintsev, D G; Helmholtz Centre for Infection Research (formerly GBF) (2008-03-05)
      The reaction of soil bacteria and fungi to the digestive fluid of the earthworm Aporrectodea caliginosa was studied. The fluid was obtained by centrifugation of the native enzymes of the digestive tract. The inhibition of growth of certain bacteria, spores, and fungal hyphae under the effect of extracts from the anterior and middle sections of the digestive tract of A. caliginosa was discovered for the first time. In bacteria, microcolony formation was inhibited as early as 20-30 s after the application of the gut extracts, which may indicate the nonenzymatic nature of the effect. The digestive fluid exhibited the same microbicidal activity whether the earthworms were feeding on soil or sterile sand. This indicates that the microbicidal agents are formed within the earthworm's body, rather than by soil microorganisms. The effect of the digestive fluid from the anterior and middle divisions is selective in relation to different microorganisms. Of 42 strains of soil bacteria, seven were susceptible to the microbicidal action of the fluid (Alcaligenes.faecalis 345-1, Microbacterium sp. 423-1, Arthrobacter sp. 430-1, Bacillus megaterium 401-1, B. megaterium 413-1, Kluyvera ascorbata 301-1, Pseudomonas reactans 387-2). The remaining bacteria did not die in the digestive fluid. Of 13 micromycetes, the digestive fluid inhibited spore germination in Aspergillus terreus and Paecilomyces lilacinus and the growth of hyphae in Trichoderma harzianum and Penicillium decumbens. The digestive fluid stimulated spore germination in Alternaria alternata and the growth of hyphae in Penicillium chrysogenum. The reaction of the remaining micromycetes was neutral. The gut fluid from the posterior division of the abdominal tract did not possess microbicidal activity. No relation was found between the reaction of microorganisms to the effects of the digestive fluid and the taxonomic position of the microorganisms. The effects revealed are similar to those shown earlier for millipedes and wood lice in the following parameters: quick action of the digestive fluid on microorganisms, and the selectivity of the action on microorganisms revealed at the strain level. The selective effect of the digestive gut fluid of the earthworms on soil microorganisms is important for animal feeding, maintaining the homeostasis of the gut microbial community, and the formation of microbial communities in soils.
    • shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain.

      Kotsyurbenko, O R; Friedrich, M W; Simankova, M V; Nozhevnikova, A N; Golyshin, P N; Timmis, K N; Conrad, R; Institut für Mikrobiologie, Carolo-Wilhelmina Technische Universität zu Braunschweig, Biozentrum, Braunschweig, Germany. olk@helmholtz-hzi.de (2007-04)
      Methane production and archaeal community composition were studied in samples from an acidic peat bog incubated at different temperatures and pH values. H(2)-dependent methanogenesis increased strongly at the lowest pH, 3.8, and Methanobacteriaceae became important except for Methanomicrobiaceae and Methanosarcinaceae. An acidophilic and psychrotolerant Methanobacterium sp. was isolated using H(2)-plus-CO(2)-supplemented medium at pH 4.5.
    • Traditional cattle manure application determines abundance, diversity and activity of methanogenic Archaea in arable European soil.

      Gattinger, Andreas; Höfle, Manfred G; Schloter, Michael; Embacher, Arndt; Böhme, Frank; Munch, Jean Charles; Labrenz, Matthias; Institute of Soil Ecology, GSF-National Research Center for Environment and Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany. (2007-03)
      Based on lipid analyses, 16S rRNA/rRNA gene single-strand conformation polymorphism fingerprints and methane flux measurements, influences of the fertilization regime on abundance and diversity of archaeal communities were investigated in soil samples from the long-term (103 years) field trial in Bad Lauchstädt, Germany. The investigated plots followed a gradient of increasing fertilization beginning at no fertilization and ending at the 'cattle manure' itself. The archaeal phospholipid etherlipid (PLEL) concentration was used as an indicator for archaeal biomass and increased with the gradient of increasing fertilization, whereby the concentrations determined for organically fertilized soils were well above previously reported values. Methane emission, although at a low level, were occasionally only observed in organically fertilized soils, whereas the other treatments showed significant methane uptake. Euryarchaeotal organisms were abundant in all investigated samples but 16S rRNA analysis also demonstrated the presence of Crenarchaeota in fertilized soils. Lowest molecular archaeal diversity was found in highest fertilized treatments. Archaea phylogenetically most closely related to cultured methanogens were abundant in these fertilized soils, whereas Archaea with low relatedness to cultured microorganisms dominated in non-fertilized soils. Relatives of Methanoculleus spp. were found almost exclusively in organically fertilized soils or cattle manure. Methanosarcina-related microorganisms were detected in all soils as well as in the cattle manure, but soils with highest organic application rate were specifically dominated by a close phylogenetic relative of Methanosarcina thermophila. Our findings suggest that regular application of cattle manure increased archaeal biomass, but reduced archaeal diversity and selected for methanogenic Methanoculleus and Methanosarcina strains, leading to the circumstance that high organic fertilized soils did not function as a methane sink at the investigated site anymore.