• Acidiplasma aeolicum gen. nov., sp. nov., a euryarchaeon of the family Ferroplasmaceae isolated from a hydrothermal pool, and transfer of Ferroplasma cupricumulans to Acidiplasma cupricumulans comb. nov.

      Golyshina, Olga V; Yakimov, Michail M; Lünsdorf, Heinrich; Ferrer, Manuel; Nimtz, Manfred; Timmis, Kenneth N; Wray, Victor; Tindall, Brian J; Golyshin, Peter N; Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany. p.golyshin@bangor.ac.uk (2009-11)
      A novel acidophilic, cell-wall-less archaeon, strain V(T), was isolated from a hydrothermal pool on Vulcano Island, Italy. The morphology of cells was observed to vary from pleomorphic to coccoid. The temperature range for growth of strain V(T) was 15-65 degrees C with an optimum at 45 degrees C. The pH for growth ranged from pH 0 to 4 with an optimal at pH 1.4-1.6. Strain V(T) was able to grow aerobically and anaerobically, oxidizing ferrous iron and reducing ferric iron, respectively. The isolate grew chemo-organotrophically with yeast extract and yeast extract with glucose as the sources of energy and carbon. The molar G+C content in the DNA was 36 mol%. 16S rRNA gene sequence analysis demonstrated that strain V(T) was a member of the family Ferroplasmaceae, order Thermoplasmatales, phylum Euryarchaeota, showing sequence identities of 100 % with Ferroplasma cupricumulans BH2(T), 95.4 % with Ferroplasma acidiphilum Y(T), 94 % with Picrophilus torridus DSM 9790(T) and 92 % with Picrophilus oshimae DSM 9789(T). 16S rRNA gene sequence-based phylogenetic analysis showed that strain V(T) formed a monophyletic cluster together with F. cupricumulans BH2(T) and all other thermophilic isolates with available 16S rRNA gene sequences, whereas F. acidiphilum Y(T) formed another cluster with mesophilic isolates within the family Ferroplasmaceae. DNA-DNA hybridization values between strain V(T) and F. cupricumulans BH2(T) were well below 70 %, indicating that the two strains belong to separate species. Principal membrane lipids of strain V(T) were dibiphytanyl-based tetraether lipids containing pentacyclic rings. The polar lipids were dominated by a single phosphoglycolipid derivative based on a galactosyl dibiphytanyl phosphoglycerol tetraether, together with smaller amounts of monoglycosyl and diglycosyl dibiphytanyl ether lipids and the corresponding phosphoglycerol derivatives. The major respiratory quinones present were naphthoquinone derivatives. Given the notable physiological and chemical differences as well as the distinct phylogenetic placement of the new isolate relative to the type species of the genus Ferroplasma, we propose strain V(T) as a member of a new genus and species, Acidiplasma aeolicum gen. nov., sp. nov. The type strain of Acidiplasma aeolicum is strain V(T) (=DSM 18409(T) =JCM 14615(T)). In addition, we propose to transfer Ferroplasma cupricumulans Hawkes et al. 2008 to the genus Acidiplasma as Acidiplasma cupricumulans comb. nov. (type strain BH2(T) =DSM 16551(T) =JCM 13668(T)).
    • Isolation of alkali-tolerant benzene-degrading bacteria from a contaminated aquifer.

      Fahy, A; Ball, A S; Lethbridge, G; Timmis, K N; McGenity, T J; Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK. afahy@essex.ac.uk (2008-07)
      AIMS: To isolate benzene-degrading strains from neutral and alkaline groundwaters contaminated by benzene, toluene, ethylbenzene, xylenes (BTEX) from the SIReN aquifer, UK, and to test their effective pH range and ability to degrade TEX. METHODS AND RESULTS: The 14 isolates studied had an optimum pH for growth of 8, and could degrade benzene to below detection level (1 microg l(-1)). Five Rhodococcus erythropolis strains were able to metabolize benzene up to pH 9, two distinct R. erythropolis strains to pH 10, and one Arthrobacter strain to pH 8.5. These Actinobacteria also degraded benzene at least down to pH 5.5. Six other isolates, a Hydrogenophaga and five Pseudomonas strains, had a narrower pH tolerance for benzene degradation (pH 6 to 8.5), and could metabolize toluene; in addition, the Hydrogenophaga and two Pseudomonas strains utilized o-, m- or p-xylenes. None of these strains degraded ethylbenzene. CONCLUSIONS: Phylogenetically distinct isolates, able to degrade BTX compounds, were obtained, and some degraded benzene at high pH. SIGNIFICANCE AND IMPACT OF THE STUDY: High pH has previously been found to inhibit in situ degradation of benzene, a widespread, carcinogenic groundwater contaminant. These benzene-degrading organisms therefore have potential applications in the remediation or natural attenuation of alkaline waters.
    • Obligate oil-degrading marine bacteria.

      Yakimov, Michail M; Timmis, Kenneth N; Golyshin, Peter N; Istituto per l'Ambiente Marino Costiero, CNR, Messina 98122, Italy. (2007-06)
      Over the past few years, a new and ecophysiologically unusual group of marine hydrocarbon-degrading bacteria - the obligate hydrocarbonoclastic bacteria (OHCB) - has been recognized and shown to play a significant role in the biological removal of petroleum hydrocarbons from polluted marine waters. The introduction of oil or oil constituents into seawater leads to successive blooms of a relatively limited number of indigenous marine bacterial genera--Alcanivorax, Marinobacter, Thallassolituus, Cycloclasticus, Oleispira and a few others (the OHCB)--which are present at low or undetectable levels before the polluting event. The types of OHCB that bloom depend on the latitude/temperature, salinity, redox and other prevailing physical-chemical factors. These blooms result in the rapid degradation of many oil constituents, a process that can be accelerated further by supplementation with limiting nutrients. Genome sequencing and functional genomic analysis of Alcanivorax borkumensis, the paradigm of OHCB, has provided significant insights into the genomic basis of the efficiency and versatility of its hydrocarbon utilization, the metabolic routes underlying its special hydrocarbon diet, and its ecological success. These and other studies have revealed the potential of OHCB for multiple biotechnological applications that include not only oil pollution mitigation, but also biopolymer production and biocatalysis.