• Care of patients with liver disease during the COVID-19 pandemic: EASL-ESCMID position paper.

      Boettler, Tobias; Newsome, Philip N; Mondelli, Mario U; Maticic, Mojca; Cordero, Elisa; Cornberg, Markus; Berg, Thomas; CiiM, Zentrum für individualisierte Infektionsmedizin, Feodor-Lynen-Str.7, 30625 Hannover. (Elsevier, 2020-04-02)
      The coronavirus disease 2019 (COVID-19) pandemic poses an enormous challenge to healthcare systems in affected communities. Older patients and those with pre-existing medical conditions have been identified as populations at risk of a severe disease course. It remains unclear at this point to what extent chronic liver diseases should be considered as risk factors, due to a shortage of appropriate studies. However, patients with advanced liver disease and those after liver transplantation represent vulnerable patient cohorts with an increased risk of infection and/or a severe course of COVID-19. In addition, the current pandemic requires unusual allocation of healthcare resources which may negatively impact the care of patients with chronic liver disease that continue to require medical attention. Thus, the challenge hepatologists are facing is to promote telemedicine in the outpatient setting, prioritise outpatient contacts, avoid nosocomial dissemination of the virus to patients and healthcare providers, and at the same time maintain standard care for patients who require immediate medical attention.
    • Chemically Engineered Immune Cell-Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools

      Jahromi, Leila Pourtalebi; Shahbazi, Mohammad Ali; Maleki, Aziz; Azadi, Amir; Santos, Hélder A.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-VCH, 2021-01-01)
      Over the past decades, considerable attention has been dedicated to the exploitation of diverse immune cells as therapeutic and/or diagnostic cell‐based microrobots for hard‐to‐treat disorders. To date, a plethora of therapeutics based on alive immune cells, surface‐engineered immune cells, immunocytes’ cell membranes, leukocyte‐derived extracellular vesicles or exosomes, and artificial immune cells have been investigated and a few have been introduced into the market. These systems take advantage of the unique characteristics and functions of immune cells, including their presence in circulating blood and various tissues, complex crosstalk properties, high affinity to different self and foreign markers, unique potential of their on‐demand navigation and activity, production of a variety of chemokines/cytokines, as well as being cytotoxic in particular conditions. Here, the latest progress in the development of engineered therapeutics and diagnostics inspired by immune cells to ameliorate cancer, inflammatory conditions, autoimmune diseases, neurodegenerative disorders, cardiovascular complications, and infectious diseases is reviewed, and finally, the perspective for their clinical application is delineated.
    • MicroRNA-221: A Fine Tuner and Potential Biomarker of Chronic Liver Injury.

      Markovic, Jovana; Sharma, Amar Deep; Balakrishnan, Asha; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-07-23)
      The last decade has witnessed significant advancements in our understanding of how small noncoding RNAs, such as microRNAs (miRNAs), regulate disease progression. One such miRNA, miR-221, has been shown to play a key role in the progression of liver fibrosis, a common feature of most liver diseases. Many reports have demonstrated the upregulation of miR-221 in liver fibrosis caused by multiple etiologies such as viral infections and nonalcoholic steatohepatitis. Inhibition of miR-221 via different strategies has shown promising results in terms of the suppression of fibrogenic gene signatures in vitro, as well as in vivo, in independent mouse models of liver fibrosis. In addition, miR-221 has also been suggested as a noninvasive serum biomarker for liver fibrosis and cirrhosis. In this review, we discuss the biology of miR-221, its significance and use as a biomarker during progression of liver fibrosis, and finally, potential and robust approaches that can be utilized to suppress liver fibrosis via inhibition of miR-221.
    • Recent Developments on the Synthesis and Bioactivity of Ilamycins/Rufomycins and Cyclomarins, Marine Cyclopeptides That Demonstrate Anti-Malaria and Anti-Tuberculosis Activity.

      Kazmaier, Uli; Junk, Lukas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-08-03)
      Ilamycins/rufomycins and cyclomarins are marine cycloheptapeptides containing unusual amino acids. Produced by Streptomyces sp., these compounds show potent activity against a range of mycobacteria, including multidrug-resistant strains of Mycobacterium tuberculosis. The cyclomarins are also very potent inhibitors of Plasmodium falciparum. Biosynthetically the cyclopeptides are obtained via a heptamodular nonribosomal peptide synthetase (NRPS) that directly incorporates some of the nonproteinogenic amino acids. A wide range of derivatives can be obtained by fermentation, while bioengineering also allows the mutasynthesis of derivatives, especially cyclomarins. Other derivatives are accessible by semisynthesis or total syntheses, reported for both natural product classes. The anti-tuberculosis (anti-TB) activity results from the binding of the peptides to the N-terminal domain (NTD) of the bacterial protease-associated unfoldase ClpC1, causing cell death by the uncontrolled proteolytic activity of this enzyme. Diadenosine triphosphate hydrolase (PfAp3Aase) was found to be the active target of the cyclomarins in Plasmodia. SAR studies with natural and synthetic derivatives on ilamycins/rufomycins and cyclomarins indicate which parts of the molecules can be simplified or otherwise modified without losing activity for either target. This review examines all aspects of the research conducted in the syntheses of these interesting cyclopeptides.