• Selective Host Cell Death by Staphylococcus aureus : A Strategy for Bacterial Persistence.

      Missiakas, Dominique; Winstel, Volker; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Frontiers, 2021-01-21)
      Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.
    • shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain.

      Kotsyurbenko, O R; Friedrich, M W; Simankova, M V; Nozhevnikova, A N; Golyshin, P N; Timmis, K N; Conrad, R; Institut für Mikrobiologie, Carolo-Wilhelmina Technische Universität zu Braunschweig, Biozentrum, Braunschweig, Germany. olk@helmholtz-hzi.de (2007-04)
      Methane production and archaeal community composition were studied in samples from an acidic peat bog incubated at different temperatures and pH values. H(2)-dependent methanogenesis increased strongly at the lowest pH, 3.8, and Methanobacteriaceae became important except for Methanomicrobiaceae and Methanosarcinaceae. An acidophilic and psychrotolerant Methanobacterium sp. was isolated using H(2)-plus-CO(2)-supplemented medium at pH 4.5.
    • Sialylation Is Dispensable for Early Murine Embryonic Development in Vitro.

      Abeln, Markus; Borst, Kristina M; Cajic, Samanta; Thiesler, Hauke; Kats, Elina; Albers, Iris; Kuhn, Maike; Kaever, Volkhard; Rapp, Erdmann; Münster-Kühnel, Anja; et al. (2017-07-04)
      The negatively charged nonulose sialic acid (Sia) is essential for murine development in vivo. In order to elucidate the impact of sialylation on differentiation processes in the absence of maternal influences, we generated mouse embryonic stem cell (mESC) lines that lack CMP-Sia synthetase (CMAS) and thereby the ability to activate Sia to CMP-Sia. Loss of CMAS activity resulted in an asialo cell surface accompanied by an increase in glycoconjugates with terminal galactosyl and oligo-LacNAc residues, as well as intracellular accumulation of free Sia. Remarkably, these changes did not impact intracellular metabolites or the morphology and transcriptome of pluripotent mESC lines. Moreover, the capacity of Cmas
    • Simple and rapid 5' and 3' extension techniques in RT-PCR.

      Struck, F; Collins, J (1994-05-25)
      Images
    • Solubility and Stability Enhanced Oral Formulations for the Anti-Infective Corallopyronin A.

      Krome, Anna K; Becker, Tim; Kehraus, Stefan; Schiefer, Andrea; Steinebach, Christian; Aden, Tilman; Frohberger, Stefan J; López Mármol, Álvaro; Kapote, Dnyaneshwar; Jansen, Rolf; et al. (MDPI, 2020-11-18)
      Novel-antibiotics are urgently needed to combat an increase in morbidity and mortality due to resistant bacteria. The preclinical candidate corallopyronin A (CorA) is a potent antibiotic against Gram-positive and some Gram-negative pathogens for which a solid oral formulation was needed for further preclinical testing of the active pharmaceutical ingredient (API). The neat API CorA is poorly water-soluble and instable at room temperature, both crucial characteristics to be addressed and overcome for use as an oral antibiotic. Therefore, amorphous solid dispersion (ASD) was chosen as formulation principle. The formulations were prepared by spray-drying, comprising the water-soluble polymers povidone and copovidone. Stability (high-performance liquid chromatography, Fourier-transform-infrared spectroscopy, differential scanning calorimetry), dissolution (biphasic dissolution), and solubility (biphasic dissolution, Pion's T3 apparatus) properties were analyzed. Pharmacokinetic evaluations after intravenous and oral administration were conducted in BALB/c mice. The results demonstrated that the ASD formulation principle is a suitable stability- and solubility-enhancing oral formulation strategy for the API CorA to be used in preclinical and clinical trials and as a potential market product.
    • Soluble immune markers in the different phases of chronic hepatitis B virus infection

      Wiegand, Steffen B.; Beggel, Bastian; Wranke, Anika; Aliabadi, Elmira; Jaroszewicz, Jerzy; Xu, Cheng Jian; Li, Yang; Manns, Michael P.; Lengauer, Thomas; Wedemeyer, Heiner; et al. (Nature publishing group, 2019-10-01)
      Chronic hepatitis B virus (HBV) infection may follow four different consecutive phases, which are defined by virology as well as biochemical markers and differ in terms of prognosis and need for antiviral treatment. Currently, host responses reflected by immune markers are not considered in this definition. We aimed to study soluble immune markers and their distribution in different phases of chronic HBV infection. In this cross-sectional retrospective study, we investigated a panel of 14 soluble immune markers (SIM) including CXCL10 in 333 patients with chronic HBV infection. In a small cohort of HBeAg positive patients we analyzed SIM before and after HBeAg seroconversion and compared seroconverters to patients with unknown outcome. Significant differences were documented in the levels of several SIM between the four phases of chronic HBV infection. The most pronounced difference among all investigated SIM was observed for CXCL10 concentrations with highest levels in patients with hepatitis. TGF-β and IL-17 revealed different levels between HBeAg negative patients. HBeAg positive patients with HBeAg seroconversion presented higher amounts of IL-12 before seroconversion compared to HBeAg positive patients with unknown follow up. SIM such as CXCL10 but also IL-12, TGF-β and IL-17 may be useful markers to further characterize the phase of chronic HBV infection.
    • Sonderforschungsbereich SFB 738: Optimierung konventioneller und innovativer Transplantate

      Manns, Michael P; Huber, Petra; Jaeckel, Elmar; Helmholtz Zentrum für Infektionsforschung GmbH, Inhoofenstr. 7, 38124 Braunschweig, Germany. (2017-08-09)
    • Stability and Biological Activity of E. coli Derived Soluble and Precipitated Bone Morphogenetic Protein-2.

      Quaas, Bastian; Burmeister, Laura; Li, Zhaopeng; Satalov, Alexandra; Behrens, Peter; Hoffmann, Andrea; Rinas, Ursula; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2019-11-20)
      PURPOSE: There is a plethora of studies on recombinant human bone morphogenetic protein-2 (rhBMP-2) application and delivery systems, but surprisingly few reports address the biophysical properties of the protein which are of crucial importance to develop effective delivery systems or to solve general problems related to rhBMP-2 production, purification, analysis and application. METHODS:The solubility, stability and bioactivity of rhBMP-2 obtained by renaturation of E. coli derived inclusion bodies was assessed at different pH and in different buffer systems using (dynamic) light scattering and thermal shift assays as well as intrinsic fluorescence measurements and luciferase based bioassays. RESULTS: rhBMP-2 is poorly soluble at physiological pH and higher. The presence of divalent anions further decreases the solubility even under acidic conditions. Thermal stability analyses revealed that rhBMP-2 precipitates are more stable compared to the soluble protein. Moreover, correctly folded rhBMP-2 is also bioactive as precipitated protein and precipitates readily dissolve under appropriate buffer conditions. Once properly formed rhBMP-2 also retains biological activity after temporary exposure to high concentrations of chaotropic denaturants. However, care should be taken to discriminate bioactive rhBMP-2 precipitates from misfolded rhBMP-2 aggregates, e.g. resolvability in MES buffer (pH 5) and a discrete peak in thermoshift experiments are mandatory for correctly folded rhBMP-2. CONCLUSIONS: Our analysis revealed that E. coli derived rhBMP-2 precipitates are not only bioactive but are also more stable compared to the soluble dimeric molecules. Knowledge about these unusual properties will be helpful to design improved delivery systems requiring lower amounts of rhBMP-2 in clinical applications.
    • Staphylococcus aureus Alpha-Toxin Limits Type 1 While Fostering Type 3 Immune Responses.

      Bonifacius, Agnes; Goldmann, Oliver; Floess, Stefan; Holtfreter, Silva; Robert, Philippe A; Nordengrün, Maria; Kruse, Friederike; Lochner, Matthias; Falk, Christine S; Schmitz, Ingo; et al. (Frontiers, 2020-08-07)
      Staphylococcus aureus can cause life-threatening diseases, and hospital- as well as community-associated antibiotic-resistant strains are an emerging global public health problem. Therefore, prophylactic vaccines or immune-based therapies are considered as alternative treatment opportunities. To develop such novel treatment approaches, a better understanding of the bacterial virulence and immune evasion mechanisms and their potential effects on immune-based therapies is essential. One important staphylococcal virulence factor is alpha-toxin, which is able to disrupt the epithelial barrier in order to establish infection. In addition, alpha-toxin has been reported to modulate other cell types including immune cells. Since CD4+ T cell-mediated immunity is required for protection against S. aureus infection, we were interested in the ability of alpha-toxin to directly modulate CD4+ T cells. To address this, murine naïve CD4+ T cells were differentiated in vitro into effector T cell subsets in the presence of alpha-toxin. Interestingly, alpha-toxin induced death of Th1-polarized cells, while cells polarized under Th17 conditions showed a high resistance toward increasing concentrations of this toxin. These effects could neither be explained by differential expression of the cellular alpha-toxin receptor ADAM10 nor by differential activation of caspases, but might result from an increased susceptibility of Th1 cells toward Ca2+-mediated activation-induced cell death. In accordance with the in vitro findings, an alpha-toxin-dependent decrease of Th1 and concomitant increase of Th17 cells was observed in vivo during S. aureus bacteremia. Interestingly, corresponding subsets of innate lymphoid cells and γδ T cells were similarly affected, suggesting a more general effect of alpha-toxin on the modulation of type 1 and type 3 immune responses. In conclusion, we have identified a novel alpha-toxin-dependent immunomodulatory strategy of S. aureus, which can directly act on CD4+ T cells and might be exploited for the development of novel immune-based therapeutic approaches to treat infections with antibiotic-resistant S. aureus strains.
    • Strategic Anti-SARS-CoV-2 Serology Testing in a Low Prevalence Setting: The COVID-19 Contact (CoCo) Study in Healthcare Professionals.

      Behrens, Georg M N; Cossmann, Anne; Stankov, Metodi V; Schulte, Bianca; Streeck, Hendrik; Förster, Reinhold; Bosnjak, Berislav; Willenzon, Stefanie; Boeck, Anna-Lena; Thu Tran, Anh; et al. (Springer Healthcare, 2020-09-04)
      Background: Serology testing is explored for epidemiological research and to inform individuals after suspected infection. During the coronavirus disease 2019 (COVID-19) pandemic, frontline healthcare professionals (HCP) may be at particular risk for infection. No longitudinal data on functional seroconversion in HCP in regions with low COVID-19 prevalence and low pre-test probability exist. Methods: In a large German university hospital, we performed weekly questionnaire assessments and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) measurements with various commercial tests, a novel surrogate virus neutralisation test, and a neutralisation assay using live SARS-CoV-2. Results: From baseline to week 6, 1080 screening measurements for anti-SARS CoV-2 (S1) IgG from 217 frontline HCP (65% female) were performed. Overall, 75.6% of HCP reported at least one symptom of respiratory infection. Self-perceived infection probability declined over time (from mean 20.1% at baseline to 12.4% in week 6, p < 0.001). In sera of convalescent patients with PCR-confirmed COVID-19, we measured high anti-SARS-CoV-2 IgG levels, obtained highly concordant results from enzyme-linked immunosorbent assays (ELISA) using e.g. the spike 1 (S1) protein domain and the nucleocapsid protein (NCP) as targets, and confirmed antiviral neutralisation. However, in HCP the cumulative incidence for anti-SARS-CoV-2 (S1) IgG was 1.86% for positive and 0.93% for equivocal positive results over the study period of 6 weeks. Except for one HCP, none of the eight initial positive results were confirmed by alternative serology tests or showed in vitro neutralisation against live SARS-CoV-2. The only true seroconversion occurred without symptoms and mounted strong functional humoral immunity. Thus, the confirmed cumulative incidence for neutralizing anti-SARS-CoV-2 IgG was 0.47%. Conclusion: When assessing anti-SARS-CoV-2 immune status in individuals with low pre-test probability, we suggest confirming positive results from single measurements by alternative serology tests or functional assays. Our data highlight the need for a methodical serology screening approach in regions with low SARS-CoV-2 infection rates.
    • Structural and functional features of self-assembling protein nanoparticles produced in endotoxin-free Escherichia coli.

      Rueda, Fabián; Céspedes, María Virtudes; Sánchez-Chardi, Alejandro; Seras-Franzoso, Joaquin; Pesarrodona, Mireia; Ferrer-Miralles, Neus; Vázquez, Esther; Rinas, Ursula; Unzueta, Ugutz; Mamat, Uwe; et al. (2016)
      Production of recombinant drugs in process-friendly endotoxin-free bacterial factories targets to a lessened complexity of the purification process combined with minimized biological hazards during product application. The development of nanostructured recombinant materials in innovative nanomedical activities expands such a need beyond plain functional polypeptides to complex protein assemblies. While Escherichia coli has been recently modified for the production of endotoxin-free proteins, no data has been so far recorded regarding how the system performs in the fabrication of smart nanostructured materials.
    • Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase.

      Muruganandam, Gopinath; Raasakka, Arne; Myllykoski, Matti; Kursula, Inari; Kursula, Petri; Helmholtz Centre for infection research, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017-05-16)
      Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase).
    • Structural, mechanistic and functional insight into gliotoxin bis-thiomethylation in Aspergillus fumigatus.

      Dolan, Stephen K; Bock, Tobias; Hering, Vanessa; Owens, Rebecca A; Jones, Gary W; Blankenfeldt, Wulf; Doyle, Sean; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-02)
      Gliotoxin is an epipolythiodioxopiperazine (ETP) class toxin, contains a disulfide bridge that mediates its toxic effects via redox cycling and is produced by the opportunistic fungal pathogen Aspergillus fumigatus Self-resistance against gliotoxin is effected by the gliotoxin oxidase GliT, and attenuation of gliotoxin biosynthesis is catalysed by gliotoxin S-methyltransferase GtmA. Here we describe the X-ray crystal structures of GtmA-apo (1.66 Å), GtmA complexed to S-adenosylhomocysteine (1.33 Å) and GtmA complexed to S-adenosylmethionine (2.28 Å), providing mechanistic insights into this important biotransformation. We further reveal that simultaneous elimination of the ability of A. fumigatus to dissipate highly reactive dithiol gliotoxin, via deletion of GliT and GtmA, results in the most significant hypersensitivity to exogenous gliotoxin observed to date. Indeed, quantitative proteomic analysis of ΔgliT::ΔgtmA reveals an uncontrolled over-activation of the gli-cluster upon gliotoxin exposure. The data presented herein reveal, for the first time, the extreme risk associated with intracellular dithiol gliotoxin biosynthesis-in the absence of an efficient dismutation capacity. Significantly, a previously concealed protective role for GtmA and functionality of ETP bis-thiomethylation as an ancestral protection strategy against dithiol compounds is now evident.
    • Synthetic rewiring and boosting type I interferon responses for visualization and counteracting viral infections.

      Gödecke, Natascha; Riedel, Jan; Herrmann, Sabrina; Behme, Sara; Rand, Ulfert; Kubsch, Tobias; Cicin-Sain, Luka; Hauser, Hansjörg; Köster, Mario; Wirth, Dagmar; et al. (Oxford Academic, 2020-11-18)
      Mammalian first line of defense against viruses is accomplished by the interferon (IFN) system. Viruses have evolved numerous mechanisms to reduce the IFN action allowing them to invade the host and/or to establish latency. We generated an IFN responsive intracellular hub by integrating the synthetic transactivator tTA into the chromosomal Mx2 locus for IFN-based activation of tTA dependent expression modules. The additional implementation of a synthetic amplifier module with positive feedback even allowed for monitoring and reacting to infections of viruses that can antagonize the IFN system. Low and transient IFN amounts are sufficient to trigger these amplifier cells. This gives rise to higher and sustained-but optionally de-activatable-expression even when the initial stimulus has faded out. Amplification of the IFN response induced by IFN suppressing viruses is sufficient to protect cells from infection. Together, this interfaced sensor/actuator system provides a toolbox for robust sensing and counteracting viral infections.
    • Targeting Antigens to Dendritic Cells the DC-Specific-ICAM3-Grabbing-Nonintegrin Receptor Induces Strong T-Helper 1 Immune Responses.

      Velasquez, Lis Noelia; Stüve, Philipp; Gentilini, Maria Virginia; Swallow, Maxine; Bartel, Judith; Lycke, Nils Yngve; Barkan, Daniel; Martina, Mariana; Lujan, Hugo D; Kalay, Hakan; et al. (2018-01-01)
      Tuberculosis remains a major global health problem and efforts to develop a more effective vaccine have been unsuccessful so far. Targeting antigens (Ags) to dendritic cells (DCs) in vivo has emerged as a new promising vaccine strategy. In this approach, Ags are delivered directly to DCs via antibodies that bind to endocytic cell-surface receptors. Here, we explored DC-specifc-ICAM3-grabbing-nonintegrin (DC-SIGN) targeting as a potential vaccine against tuberculosis. For this, we made use of the hSIGN mouse model that expresses human DC-SIGN under the control of the murine CD11c promoter. We show that in vitro and in vivo delivery of anti-DC-SIGN antibodies conjugated to Ag85B and peptide 25 of Ag85B in combination with anti-CD40, the fungal cell wall component zymosan, and the cholera toxin-derived fusion protein CTA1-DD induces strong Ag-specifc CD4+ T-cell responses. Improved anti-mycobacterial immunity was accompanied by increased frequencies of Ag-specifc IFN-γ+ IL-2+ TNF-α+ polyfunctional CD4+ T cells in vaccinated mice compared with controls. Taken together, in this study we provide the proof of concept that the human DC-SIGN receptor can be effciently exploited for vaccine purposes to promote immunity against mycobacterial infections.
    • Targeting Antitumoral Proteins to Breast Cancer by Local Administration of Functional Inclusion Bodies

      Pesarrodona, Mireia; Jauset, Toni; Díaz-Riascos, Zamira V.; Sánchez-Chardi, Alejandro; Beaulieu, Marie Eve; Seras-Franzoso, Joaquin; Sánchez-García, Laura; Baltà-Foix, Ricardo; Mancilla, Sandra; Fernández, Yolanda; et al. (Wiley-VCH, 2019-01-01)
      Two structurally and functionally unrelated proteins, namely Omomyc and p31, are engineered as CD44-targeted inclusion bodies produced in recombinant bacteria. In this unusual particulate form, both types of protein materials selectively penetrate and kill CD44+ tumor cells in culture, and upon local administration, promote destruction of tumoral tissue in orthotropic mouse models of human breast cancer. These findings support the concept of bacterial inclusion bodies as versatile protein materials suitable for application in chronic diseases that, like cancer, can benefit from a local slow release of therapeutic proteins
    • Ten-year efficacy and safety of tenofovir disoproxil fumarate treatment for chronic hepatitis B virus infection.

      Marcellin, Patrick; Wong, Dave; Sievert, William; Buggisch, Peter; Petersen, Jörg; Flisiak, Robert; Manns, Michael; Kaita, Kelly; Krastev, Zahari; Lee, Samuel S; et al. (Wiley-Blackwell, 2019-05-28)
      Background & Aims Tenofovir disoproxil fumarate (TDF) is a first‐line treatment for chronic hepatitis B (CHB). We aimed to describe the efficacy and safety profiles of TDF treatment for up to 10 years in a well‐described cohort of CHB patients. Methods Hepatitis B e antigen (HBeAg)‐negative and HBeAg‐positive patients from two randomised, double‐blind trials (ClinicalTrials. gov: NCT00117676 and NCT00116805) completed 48 weeks of randomised treatment with TDF or adefovir dipivoxil. A subset of these patients was then eligible to receive open‐label TDF treatment for up to 10 years. At Year 10, patients were assessed for virological suppression, alanine aminotransferase (ALT) normalisation, serological response, safety, and tolerability. Results Of 641 randomised and treated patients, 585 (91%) entered the open‐label extension phase with 203 (32%) patients completing Year 10 of the study. At Year 10, 118/118 (100%) of HBeAg‐negative patients and 78/80 (98%) of HBeAg‐positive patients with available data achieved hepatitis B virus (HBV) DNA <69 IU/mL, while 88/106 (83%) and 60/77 (78%) patients achieved ALT normalisation, respectively. Of the 23 patients with HBeAg status available at Year 10, 12 (52%) and six (27%) experienced HBeAg loss and seroconversion, respectively. No resistance to TDF was documented up to Year 10. In the period between Year 8 and Year 10, the safety profile of TDF was similar to previous reports, with few patients experiencing renal‐ or bone‐related adverse events. Conclusions Over 10 years, TDF had a favourable safety profile, was well tolerated, and resulted in continued maintenance of virological suppression with no documented resistance.
    • TGFβ-activation by dendritic cells drives Th17 induction and intestinal contractility and augments the expulsion of the parasite Trichinella spiralis in mice.

      Steel, Nicola; Faniyi, Aduragbemi A; Rahman, Sayema; Swietlik, Stefanie; Czajkowska, Beata I; Chan, Bethany T; Hardgrave, Alexander; Steel, Anthony; Sparwasser, Tim D; Assas, Mushref B; et al. (PLOS, 2019-01-01)
      Helminths are highly prevalent metazoan parasites that infect over a billion of the world’s population. Hosts have evolved numerous mechanisms to drive the expulsion of these parasites via Th2-driven immunity, but these responses must be tightly controlled to prevent equally devastating immunopathology. However, mechanisms that regulate this balance are still unclear. Here we show that the vigorous Th2 immune response driven by the small intestinal helminth Trichinella spiralis, is associated with increased TGFβ signalling responses in CD4+ T-cells. Mechanistically, enhanced TGFβ signalling in CD4+ T-cells is dependent on dendritic cell-mediated TGFβ activation which requires expression of the integrin αvβ8. Importantly, mice lacking integrin αvβ8 on DCs had a delayed ability to expel a T. spiralis infection, indicating an important functional role for integrin αvβ8-mediated TGFβ activation in promoting parasite expulsion. In addition to maintaining regulatory T-cell responses, the CD4+ T-cell signalling of this pleiotropic cytokine induces a Th17 response which is crucial in promoting the intestinal muscle hypercontractility that drives worm expulsion. Collectively, these results provide novel insights into intestinal helminth expulsion beyond that of classical Th2 driven immunity, and highlight the importance of IL-17 in intestinal contraction which may aid therapeutics to numerous diseases of the intestine.
    • Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida

      Arias, Sagrario; Bassas-Galia, Monica; Molinari, Gabriella; Timmis, Kenneth N.; Environmental microbiology; Helmholtz Centre for infection research; Inhoffenstr. 7, D-38124 Braunschweig, Germany (2014-03-06)
    • TLR4 abrogates the Th1 immune response through IRF1 and IFN-β to prevent immunopathology during L. infantum infection.

      Sacramento, Laís Amorim; Benevides, Luciana; Maruyama, Sandra Regina; Tavares, Lucas; Fukutani, Kiyoshi Ferreira; Francozo, Marcela; Sparwasser, Tim; Cunha, Fernando Queiroz; Almeida, Roque Pacheco; da Silva, João Santana; et al. (PLOS, 2020-03-25)
      A striking feature of human visceral leishmaniasis (VL) is chronic inflammation in the spleen and liver, and VL patients present increased production levels of multiple inflammatory mediators, which contribute to tissue damage and disease severity. Here, we combined an experimental model with the transcriptional profile of human VL to demonstrate that the TLR4-IFN-β pathway regulates the chronic inflammatory process and is associated with the asymptomatic form of the disease. Tlr4-deficient mice harbored fewer parasites in their spleen and liver than wild-type mice. TLR4 deficiency enhanced the Th1 immune response against the parasite, which was correlated with an increased activation of dendritic cells (DCs). Gene expression analyses demonstrated that IRF1 and IFN-β were expressed downstream of TLR4 after infection. Accordingly, IRF1- and IFNAR-deficient mice harbored fewer parasites in the target organs than wild-type mice due to having an increased Th1 immune response. However, the absence of TLR4 or IFNAR increased the serum transaminase levels in infected mice, indicating the presence of liver damage in these animals. In addition, IFN-β limits IFN-γ production by acting directly on Th1 cells. Using RNA sequencing analysis of human samples, we demonstrated that the transcriptional signature for the TLR4 and type I IFN (IFN-I) pathways was positively modulated in asymptomatic subjects compared with VL patients and thus provide direct evidence demonstrating that the TLR4-IFN-I pathway is related to the nondevelopment of the disease. In conclusion, our results demonstrate that the TLR4-IRF1 pathway culminates in IFN-β production as a mechanism for dampening the chronic inflammatory process and preventing immunopathology development.