• High yield recombinant penicillin G amidase production and export into the growth medium using Bacillus megaterium.

      Yang, Yang; Biedendieck, Rebekka; Wang, Wei; Gamer, Martin; Malten, Marco; Jahn, Dieter; Deckwer, Wolf-Dieter (2006)
      BACKGROUND: During the last years B. megaterium was continuously developed as production host for the secretion of proteins into the growth medium. Here, recombinant production and export of B. megaterium ATCC14945 penicillin G amidase (PGA) which is used in the reverse synthesis of beta-lactam antibiotics were systematically improved. RESULTS: For this purpose, the PGA leader peptide was replaced by the B. megaterium LipA counterpart. A production strain deficient in the extracellular protease NprM and in xylose utilization to prevent gene inducer deprivation was constructed and employed. A buffered mineral medium containing calcium ions and defined amino acid supplements for optimal PGA production was developed in microscale cultivations and scaled up to a 2 Liter bioreactor. Productivities of up to 40 mg PGA per L growth medium were reached. CONCLUSION: The combination of genetic and medium optimization led to an overall 7-fold improvement of PGA production and export in B. megaterium. The exclusion of certain amino acids from the minimal medium led for the first time to higher volumetric PGA activities than obtained for complex medium cultivations.
    • A metaproteomics approach to elucidate host and pathogen protein expression during catheter-associated urinary tract infections (CAUTIs).

      Lassek, Christian; Burghartz, Melanie; Chaves-Moreno, Diego; Otto, Andreas; Hentschker, Christian; Fuchs, Stephan; Bernhardt, Jörg; Jauregui, Ruy; Neubauer, Rüdiger; Becher, Dörte; et al. (2015-04)
      Long-term catheterization inevitably leads to a catheter-associated bacteriuria caused by multispecies bacterial biofilms growing on and in the catheters. The overall goal of the presented study was (1) to unravel bacterial community structure and function of such a uropathogenic biofilm and (2) to elucidate the interplay between bacterial virulence and the human immune system within the urine. To this end, a metaproteomics approach combined with in vitro proteomics analyses was employed to investigate both, the pro- and eukaryotic protein inventory. Our proteome analyses demonstrated that the biofilm of the investigated catheter is dominated by three bacterial species, that is, Pseudomonas aeruginosa, Morganella morganii, and Bacteroides sp., and identified iron limitation as one of the major challenges in the bladder environment. In vitro proteome analysis of P. aeruginosa and M. morganii isolated from the biofilm revealed that these opportunistic pathogens are able to overcome iron restriction via the production of siderophores and high expression of corresponding receptors. Notably, a comparison of in vivo and in vitro protein profiles of P. aeruginosa and M. morganii also indicated that the bacteria employ different strategies to adapt to the urinary tract. Although P. aeruginosa seems to express secreted and surface-exposed proteases to escape the human innate immune system and metabolizes amino acids, M. morganii is able to take up sugars and to degrade urea. Most interestingly, a comparison of urine protein profiles of three long-term catheterized patients and three healthy control persons demonstrated the elevated level of proteins associated with neutrophils, macrophages, and the complement system in the patient's urine, which might point to a specific activation of the innate immune system in response to biofilm-associated urinary tract infections. We thus hypothesize that the often asymptomatic nature of catheter-associated urinary tract infections might be based on a fine-tuned balance between the expression of bacterial virulence factors and the human immune system.