• Fitness of isogenic colony morphology variants of Pseudomonas aeruginosa in murine airway infection.

      Rakhimova, Elza; Munder, Antje; Wiehlmann, Lutz; Bredenbruch, Florian; Tümmler, Burkhard; Clinical Research Group, OE6710, Hanover Medical School, Hanover, Germany. (2008)
      Chronic lung infections with Pseudomonas aeruginosa are associated with the diversification of the persisting clone into niche specialists and morphotypes, a phenomenon called 'dissociative behaviour'. To explore the potential of P. aeruginosa to change its morphotype by single step loss-of-function mutagenesis, a signature-tagged mini-Tn5 plasposon library of the cystic fibrosis airway isolate TBCF10839 was screened for colony morphology variants under nine different conditions in vitro. Transposon insertion into 1% of the genome changed colony morphology into eight discernable morphotypes. Half of the 55 targets encode features of primary or secondary metabolism whereby quinolone production was frequently affected. In the other half the transposon had inserted into genes of the functional categories transport, regulation or motility/chemotaxis. To mimic dissociative behaviour of isogenic strains in lungs, pools of 25 colony morphology variants were tested for competitive fitness in an acute murine airway infection model. Six of the 55 mutants either grew better or worse in vivo than in vitro, respectively. Metabolic proficiency of the colony morphology variant was a key determinant for survival in murine airways. The most common morphotype of self-destructive autolysis did unexpectedly not impair fitness. Transposon insertions into homologous genes of strain PAO1 did not reproduce the TBCF10839 mutant morphotypes for 16 of 19 examined loci pointing to an important role of the genetic background on colony morphology. Depending on the chosen P. aeruginosa strain, functional genome scans will explore other areas of the evolutionary landscape. Based on our discordant findings of mutant phenotypes in P. aeruginosa strains PAO1, PA14 and TBCF10839, we conclude that the current focus on few reference strains may miss modes of niche adaptation and dissociative behaviour that are relevant for the microevolution of complex traits in the wild.
    • Minimal increase in genetic diversity enhances predation resistance.

      Koh, Kai S; Matz, Carsten; Tan, Chuan H; LE, Hoang L; Rice, Scott A; Marshall, Dustin J; Steinberg, Peter D; Kjelleberg, Staffan; Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW, Australia School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia. (2012-04)
      The importance of species diversity to emergent, ecological properties of communities is increasingly appreciated, but the importance of within-species genetic diversity for analogous emergent properties of populations is only just becoming apparent. Here, the properties and effects of genetic variation on predation resistance in populations were assessed and the molecular mechanism underlying these emergent effects was investigated. Using biofilms of the ubiquitous bacterium Serratia marcescens, we tested the importance of genetic diversity in defending biofilms against protozoan grazing, a main source of mortality for bacteria in all natural ecosystems. S. marcescens biofilms established from wild-type cells produce heritable, stable variants, which when experimentally combined, persist as a diverse assemblage and are significantly more resistant to grazing than either wild type or variant biofilms grown in monoculture. This diversity effect is biofilm-specific, a result of either facilitation or resource partitioning among variants, with equivalent experiments using planktonic cultures and grazers resulting in dominance by a single resistant strain. The variants studied are all the result of single nucleotide polymorphisms in one regulatory gene suggesting that the benefits of genetic diversity in clonal biofilms can occur through remarkably minimal genetic change. The findings presented here provide a new insight on the integration of genetics and population ecology, in which diversity arising through minimal changes in genotype can have major ecological implications for natural populations.