• Immune response modifiers--mode of action.

      Schiller, Meinhard; Metze, Dieter; Luger, Thomas A; Grabbe, Stephan; Gunzer, Matthias (2006-05-01)
      The innate immune system governs the interconnecting pathways of microbial recognition, inflammation, microbial clearance, and cell death. A family of evolutionarily conserved receptors, known as the Toll-like receptors (TLRs), is crucial in early host defense against invading pathogens. Upon TLR stimulation, nuclear factor-kappaB activation and the interferon (IFN)-regulatory factor 3 pathway initiate production of pro-inflammatory cytokines, such as interleukin-1 and tumor necrosis factor-alpha, and production of type I IFNs (IFN-alpha and IFN-beta), respectively. The innate immunity thereby offers diverse targets for highly selective therapeutics, such as small molecular synthetic compounds that modify innate immune responses. The notion that activation of the innate immune system is a prerequisite for the induction of acquired immunity raised interest in these immune response modifiers as potential therapeutics for viral infections and various tumors. A scenario of dermal events following skin cancer treatment with imiquimod presumably comprises (i) an initial low amount of pro-inflammatory cytokine secretion by macrophages and dermal dendritic cells (DCs), thereby (ii) attracting an increasing number type I IFN-producing plasmacytoid DCs (pDCs) from the blood; (iii) Langerhans cells migrate into draining lymph nodes, leading to an increased presentation of tumor antigen in the draining lymph node, and (iv) consequently an increased generation of tumor-specific T cells and finally (v) an accumulation of tumoricidal effector cells in the treated skin area. The induction of predominately T helper (Th)1-type cytokine profiles by TLR agonists such as imiquimod might have further benefits by shifting the dominant Th2-type response in atopic diseases such as asthma and atopic dermatitis to a more potent Th1 response.
    • The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging.

      Niesner, Raluca; Andresen, Volker; Neumann, Jens; Spiecker, Heinrich; Gunzer, Matthias; Helmholtz Centre for Infection Research, Junior Research Group Immunodynamics, D-38124 Braunschweig, Germany. (2007-10-01)
      Two-photon microscopy is indispensable for deep tissue and intravital imaging. However, current technology based on single-beam point scanning has reached sensitivity and speed limits because higher performance requires higher laser power leading to sample degradation. We utilize a multifocal scanhead splitting a laser beam into a line of 64 foci, allowing sample illumination in real time at full laser power. This technology requires charge-coupled device field detection in contrast to conventional detection by photomultipliers. A comparison of the optical performance of both setups shows functional equivalence in every measurable parameter down to penetration depths of 200 microm, where most actual experiments are executed. The advantage of photomultiplier detection materializes at imaging depths >300 microm because of their better signal/noise ratio, whereas only charge-coupled devices allow real-time detection of rapid processes (here blood flow). We also find that the point-spread function of both devices strongly depends on tissue constitution and penetration depth. However, employment of a depth-corrected point-spread function allows three-dimensional deconvolution of deep-tissue data up to an image quality resembling surface detection.