• 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia.

      Romero-Tabarez, Magally; Jansen, Rolf; Sylla, Marita; Lünsdorf, Heinrich; Häussler, Susanne; Santosa, Dwi A; Timmis, Kenneth N; Molinari, Gabriella (2006-05-01)
      We report here the discovery, isolation, and chemical and preliminary biological characterization of a new antibiotic compound, 7-O-malonyl macrolactin A (MMA), produced by a Bacillus subtilis soil isolate. MMA is a bacteriostatic antibiotic that inhibits a number of multidrug-resistant gram-positive bacterial pathogens, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia. MMA-treated staphylococci and enterococci were pseudomulticellular and exhibited multiple asymmetric initiation points of septum formation, indicating that MMA may inhibit a cell division function.
    • Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400.

      Seeger, M; Timmis, K N; Hofer, B; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (1995-07)
      Metabolism of 21 chlorobiphenyls by the enzymes of the upper biphenyl catabolic pathway encoded by the bph locus of Pseudomonas sp. strain LB400 was investigated by using recombinant strains harboring gene cassettes containing bphABC or bphABCD. The enzymes of the upper pathway were generally able to metabolize mono- and dichlorinated biphenyls but only partially transform most trichlorinated congeners investigated: 14 of 15 mono- and dichlorinated and 2 of 6 trichlorinated congeners were converted into benzoates. All mono- and at least 8 of 12 dichlorinated congeners were attacked by the bphA-encoded biphenyl dioxygenase virtually exclusively at ortho and meta carbons. This enzyme exhibited a high degree of selectivity for the aromatic ring to be attacked, with the order of ring preference being non- > ortho- > meta- > para-substituted for mono- and dichlorinated congeners. The influence of the chlorine substitution pattern of the metabolized ring on benzoate formation resembled its influence on the reactivity of initial dioxygenation, suggesting that the rate of benzoate formation may frequently be determined by the rate of initial attack. The absorption spectra of phenylhexadienoates formed correlated with the presence or absence of a chlorine substituent at an ortho position.
    • Identification of new acceptor specificities of glycosyltransferase R with the aid of substrate microarrays.

      Seibel, Jürgen; Hellmuth, Hendrik; Hofer, Bernd; Kicinska, Anna-Maria; Schmalbruch, Bodo (2006-02-01)
      Finding opportunities to construct sugar motifs and to transfer them to targets of biological relevance and rapid identification of glycosylation events are important goals for glycobiology and a field of increasing interest. Here we have applied an enzyme microarray screening system for the identification of new acceptor specificities of the glycosyltransferase R (GTFR) from Streptococcus oralis (E.C., which was able to effect the synthesis of sugar motifs in short times and with low amounts of substrate. These observations resulted in the development of a convenient alpha-glycosylation by the non-Leloir glycosyltransferase GTFR, with sucrose as substrate and with different alcohols and amino acid derivatives as acceptors, for the synthesis of glycoethers and glycosylated amino acids not observed with the use of familiar GTFs with high sequence homology.