• Biological functions of GCS3, a novel plasminogen-binding protein of Streptococcus dysgalactiae ssp. equisimilis.

      Bergmann, René; Dinkla, Katrin; Nitsche-Schmitz, D Patric; Graham, Rikki M A; Lüttge, Melanie; Sanderson-Smith, Martina L; Nerlich, Andreas; Rohde, Manfred; Chhatwal, Gursharan S; Dept. of Medical Microbiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. (2011-02)
      Increasing awareness of the relevance of Streptococcus dysgalactiae ssp. equisimilis as a human pathogen motivates the analysis of its pathomechanisms. One of the mechanisms that increases infectivity and dissemination of several streptococcal species is the recruitment and subsequent activation of host plasminogen on the streptococcal surface. This study identified GCS3 as a novel plasminogen-binding M protein of S. dysgalactiae ssp. equisimilis and revealed a difference in the mode of binding as compared to the plasminogen-binding protein PAM of S. pyogenes. In contrast to PAM, GCS3 did not bind to the kringle 1-3 region of plasminogen. Despite this difference, GCS3 exerts the same function of recruiting plasminogen to the streptococcal surface, which can be activated by streptokinase and host plasminogen activators to serve as a spreading factor. Moreover, we demonstrate a role of GCS3 in plasminogen-dependent streptococcal adherence to human pharyngeal cells (cell line Detroit 562) that indicates an additional function of the protein as an adhesin in the oral cavity.
    • Contribution of plasminogen activation towards the pathogenic potential of oral streptococci.

      Itzek, Andreas; Gillen, Christine M; Fulde, Marcus; Friedrichs, Claudia; Rodloff, Arne C; Chhatwal, Gursharan S; Nitsche-Schmitz, Daniel Patric; Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2010)
      Oral streptococci are a heterogeneous group of human commensals, with a potential to cause serious infections. Activation of plasminogen has been shown to increase the virulence of typical human pathogenic streptococci such as S. pneumoniae. One important factor for plasminogen activation is the streptococcal α-enolase. Here we report that plasminogen activation is also common in oral streptococci species involved in clinical infection and that it depends on the action of human plasminogen activators. The ability to activate plasminogen did not require full conservation of the internal plasminogen binding sequence motif FYDKERKVY of α-enolase that was previously described as crucial for increased plasminogen binding, activation and virulence. Instead, experiments with recombinant α-enolase variants indicate that the naturally occurring variations do not impair plasminogen binding. In spite of these variations in the internal plasminogen binding motif oral streptococci showed similar activation of plasminogen. We conclude that the pathomechanism of plasminogen activation is conserved in oral streptococci that cause infections in human. This may contribute to their opportunistic pathogenic character that is unfurled in certain niches.
    • DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts.

      Candela, Marco; Centanni, Manuela; Fiori, Jessica; Biagi, Elena; Turroni, Silvia; Orrico, Catia; Bergmann, Simone; Hammerschmidt, Sven; Brigidi, Patrizia; Department of Pharmaceutical Sciences, University of Bologna, Italy. (2010-06)
      Bifidobacterium animalis subsp. lactis lives in the gastrointestinal tract of most mammals, including humans. Recently, for the probiotic strain B. animalis subsp. lactis BI07, a dose-dependent plasminogen-binding activity was demonstrated and five putative plasminogen-binding proteins were identified. Here we investigated the role of surface DnaK as a B. animalis subsp. lactis BI07 plasminogen receptor. DnaK was visualized on the bacterial cell surface by transmission electron microscopy. The His-tagged recombinant DnaK protein showed a high affinity for human plasminogen, with an equilibrium dissociation constant in the nanomolar range. The capability to tolerate physiological concentrations of bile salts is a crucial feature for an intestinal symbiont micro-organism. By proteome analysis we demonstrated that the long-term exposure of B. animalis subsp. lactis BI07 to bile salts results in the upregulation of important surface plasminogen receptors such as DnaK and enolase. Moreover, adaptation of B. animalis subsp. lactis BI07 to physiological concentrations of bile salts significantly increased its capacity to interact with the host plasminogen system. By enhancing the bacterial capacity to interact with the host plasminogen, the gut bile environment may facilitate the colonization of the human host by B. animalis subsp. lactis BI07.
    • Identification of a streptococcal octapeptide motif involved in acute rheumatic fever.

      Dinkla, Katrin; Nitsche-Schmitz, D Patric; Barroso, Vanessa; Reissmann, Silvana; Johansson, Helena M; Frick, Inga-Maria; Rohde, Manfred; Chhatwal, Gursharan S; Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. (2007-06-29)
      Acute rheumatic fever is a serious autoimmune sequela of pharyngitis caused by certain group A streptococci. One mechanism applied by streptococcal strains capable of causing acute rheumatic fever is formation of an autoantigenic complex with human collagen IV. In some geographic regions with a high incidence of acute rheumatic fever pharyngeal carriage of group C and group G streptococci prevails. Examination of such strains revealed the presence of M-like surface proteins that bind human collagen. Using a peptide array and recombinant proteins with targeted amino acid substitutions, we could demonstrate that formation of collagen complexes during streptococcal infections depends on an octapeptide motif, which is present in collagen binding M and M-like proteins of different beta-hemolytic streptococcal species. Mice immunized with streptococcal proteins that contain the collagen binding octapeptide motif developed high serum titers of anti-collagen antibodies. In sera of rheumatic fever patients such a collagen autoimmune response was accompanied by specific reactivity against the collagen-binding proteins, linking the observed effect to clinical cases. Taken together, the data demonstrate that the identified octapeptide motif through its action on collagen plays a crucial role in the pathogenesis of rheumatic fever. Eradication of streptococci that express proteins with the collagen binding motif appears advisable for controlling rheumatic fever.
    • Impact of glutamine transporters on pneumococcal fitness under infection-related conditions.

      Härtel, Tobias; Klein, Matthias; Koedel, Uwe; Rohde, Manfred; Petruschka, Lothar; Hammerschmidt, Sven; Department of Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, D-17487 Greifswald, Germany. (2011-01)
      The genomic analysis of Streptococcus pneumoniae predicted six putative glutamine uptake systems, which are expressed under in vitro conditions, as shown here by reverse transcription-PCR. Four of these operons consist of glnHPQ, while two lack glnH, which encodes a soluble glutamine-binding protein. Here, we studied the impact of two of these glutamine ATP-binding cassette transporters on S. pneumoniae D39 virulence and phagocytosis, which consist of GlnQ and a translationally fused protein of GlnH and GlnP. Mice infected intranasally with D39Δgln0411/0412 showed significantly increased survival times and a significant delay in the development of pneumococcal pneumonia compared to those infected with D39, as observed in real time using bioluminescent pneumococci. In a mouse sepsis model, the mutant D39Δgln0411/0412 showed only moderate but significant attenuation. In contrast, the D39Δgln1098/1099 knockout strain was massively attenuated in the pneumonia and septicemia mouse infection model. To cause pneumonia or sepsis with D39Δgln1098/1099, infection doses 100- to 10,000-fold higher than those used for wild-type strain D39 were required. In an experimental mouse meningitis model, D39Δgln1098/1099 produced decreased levels of white blood cells in cerebrospinal fluid and showed decreased numbers of bacteria in the bloodstream compared to D39 and D39Δgln0411/0412. Phagocytosis experiments revealed significantly decreased intracellular survival rates of mutants D39Δgln1098/1099 and D39Δgln0411/0412 compared to wild-type D39, suggesting that the deficiency of Gln uptake systems impairs resistance to oxidative stress. Taken together, our results demonstrate that both glutamine uptake systems are required for full virulence of pneumococci but exhibit different impacts on the pathogenesis of pneumococci under in vivo conditions.
    • Invasion mechanisms of Gram-positive pathogenic cocci.

      Nitsche-Schmitz, D Patric; Rohde, Manfred; Chhatwal, Gursharan S; Helmholtz Centre for Infection Research, Microbial Pathogenesis, Braunschweig, Germany. (2007-09)
      Gram-positive cocci are important human pathogens. Streptococci and staphylococci in particular are a major threat to human health, since they cause a variety of serious invasive infections. Their invasion into normally sterile sites of the host depends on elaborated bacterial mechanisms that involve adhesion to the host tissue, its degradation, internalisation by host cells, and passage through epithelia and endothelia. Interactions of bacterial surface proteins with proteins of the host's extracellular matrix as well as with cell surface receptors are crucial factors in these processes, and some of the key mechanisms are similar in many pathogenic Gram-positive cocci. Therapies that interfere with these mechanisms may become efficient alternatives to today's antibiotic treatments.
    • Region specific and worldwide distribution of collagen-binding M proteins with PARF motifs among human pathogenic streptococcal isolates.

      Reissmann, Silvana; Gillen, Christine M; Fulde, Marcus; Bergmann, René; Nerlich, Andreas; Rajkumari, Reena; Brahmadathan, Kootallur N; Chhatwal, Gursharan S; Nitsche-Schmitz, D Patric; Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2012)
      Some of the variety of Streptococcus pyogenes and Streptococcus dysgalactiae ssp. equisimilis (SDSE) M proteins act as collagen-binding adhesins that facilitate acute infection. Moreover, their potential to trigger collagen autoimmunity has been implicated in the pathogenesis of acute rheumatic fever and attributed to a collagen-binding motif called PARF (peptide associated with rheumatic fever). For the first time we determine the rate of clinical isolates with collagen-binding M proteins that use a PARF motif (A/T/E)XYLXX(L/F)N in a defined geographic region, Vellore in South India. In this region both, incidence of streptococcal infections and prevalence of acute rheumatic fever are high. M proteins with PARF motif conferred collagen-binding activity to 3.9% of 153 S. pyogenes and 10.6% of 255 SDSE clinical isolates from Vellore. The PARF motif occurred in three S. pyogenes and 22 SDSE M protein types. In one of the S. pyogenes and five of the SDSE M proteins that contained the motif, collagen-binding was impaired, due to influences of other parts of the M protein molecule. The accumulated data on the collagen binding activity of certain M protein types allowed a reanalysis of published worldwide emm-typing data with the aim to estimate the rates of isolates that bind collagen via PARF. The results indicate that M proteins, which bind collagen via a PARF motif, are epidemiologically relevant in human infections, not only in Vellore. It is imperative to include the most relevant collagen-binding M types in vaccines. But when designing M protein based vaccines it should be considered that collagen binding motifs within the vaccine antigen remain potential risk factors.
    • Role of glucose and CcpA in capsule expression and virulence of Streptococcus suis.

      Willenborg, J; Fulde, M; de Greeff, A; Rohde, Manfred; Smith, H E; Valentin-Weigand, P; Goethe, R; Institute for Microbiology, University of Veterinary Medicine, Hannover, Germany. (2011-06)
      Streptococcus suis is one of the most important pathogens in pigs and is also an emerging zoonotic agent. After crossing the epithelial barrier, S. suis causes bacteraemia, resulting in meningitis, endocarditis and bronchopneumonia. Since the host environment seems to be an important regulatory component for virulence, we related expression of virulence determinants of S. suis to glucose availability during growth and to the sugar metabolism regulator catabolite control protein A (CcpA). We found that expression of the virulence-associated genes arcB, representing arcABC operon expression, cps2A, representing capsular locus expression, as well as sly, ofs, sao and epf, differed significantly between exponential and early stationary growth of a highly virulent serotype 2 strain. Deletion of ccpA altered the expression of the surface-associated virulence factors arcB, sao and eno, as well as the two currently proven virulence factors in pigs, ofs and cps2A, in early exponential growth. Global expression analysis using a cDNA expression array revealed 259 differentially expressed genes in early exponential growth, of which 141 were more highly expressed in the CcpA mutant strain 10ΔccpA and 118 were expressed to a lower extent. Interestingly, among the latter genes, 18 could be related to capsule and cell wall synthesis. Correspondingly, electron microscopy characterization of strain 10ΔccpA revealed a markedly reduced thickness of the capsule. This phenotype correlated with enhanced binding to porcine plasma proteins and a reduced resistance to killing by porcine neutrophils. Taken together, our data demonstrate that CcpA has a significant effect on the capsule synthesis and virulence properties of S. suis.
    • SCM, a novel M-like protein from Streptococcus canis, binds (mini)-plasminogen with high affinity and facilitates bacterial transmigration.

      Fulde, Marcus; Rohde, Manfred; Hitzmann, Angela; Preissner, Klaus T; Nitsche-Schmitz, D Patric; Nerlich, Andreas; Chhatwal, Gursharan Singh; Bergmann, Simone; Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany. Marcus.Fulde@helmholtz-hzi.de (2011-02-24)
      Streptococcus canis is an important zoonotic pathogen capable of causing serious invasive diseases in domestic animals and humans. In the present paper we report the binding of human plasminogen to S. canis and the recruitment of proteolytically active plasmin on its surface. The binding receptor for plasminogen was identified as a novel M-like protein designated SCM (S. canis M-like protein). SPR (surface plasmon resonance) analyses, radioactive dot-blot analyses and heterologous expression on the surface of Streptococcus gordonii confirmed the plasminogen-binding capability of SCM. The binding domain was located within the N-terminus of SCM, which specifically bound to the C-terminal part of plasminogen (mini-plasminogen) comprising kringle domain 5 and the catalytic domain. In the presence of urokinase, SCM mediated plasminogen activation on the bacterial surface that was inhibited by serine protease inhibitors and lysine amino acid analogues. Surface-bound plasmin effectively degraded purified fibrinogen as well as fibrin clots, resulting in the dissolution of fibrin thrombi. Electron microscopic illustration and time-lapse imaging demonstrated bacterial transmigration through fibrinous thrombi. The present study has led, for the first time, to the identification of SCM as a novel receptor for (mini)-plasminogen mediating the fibrinolytic activity of S. canis.
    • Virulence gene pool detected in bovine group C Streptococcus dysgalactiae subsp. dysgalactiae isolates by use of a group A S. pyogenes virulence microarray.

      Rato, Márcia G; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F; Vilela, Cristina L; Santos-Sanches, Ilda; Chhatwal, Gursharan S; Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal. (2011-07)
      A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans.