• Cooperative binding and activation of fibronectin by a bacterial surface protein.

      Marjenberg, Zoe R; Ellis, Ian R; Hagan, Robert M; Prabhakaran, Sabitha; Höök, Magnus; Talay, Susanne R; Potts, Jennifer R; Staunton, David; Schwarz-Linek, Ulrich; Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, Scotland, United Kingdom. (2011-01-21)
      Integrin-dependent cell invasion of some pathogenic bacteria is mediated by surface proteins targeting the extracellular matrix protein fibronectin (FN). Although the structural basis for bacterial FN recognition is well understood, it has been unclear why proteins such as streptococcal SfbI contain several FN-binding sites. We used microcalorimetry to reveal cooperative binding of FN fragments to arrays of binding sites in SfbI. In combination with thermodynamic analyses, functional cell-based assays show that SfbI induces conformational changes in the N-terminal 100-kDa region of FN (FN100kDa), most likely by competition with intramolecular interactions defining an inactive state of FN100kDa. This study provides insights into how long range conformational changes resulting in FN activation may be triggered by bacterial pathogens.
    • Differences in the aromatic domain of homologous streptococcal fibronectin-binding proteins trigger different cell invasion mechanisms and survival rates.

      Rohde, Manfred; Graham, Rikki M; Branitzki-Heinemann, Katja; Borchers, Patricia; Preuss, Claudia; Schleicher, Ina; Zähner, Dorothea; Talay, Susanne R; Fulde, Marcus; Dinkla, Katrin; et al. (2011-03)
      Group A streptococci (GAS, Streptococcus pyogenes) and Group G streptococci (GGS, Streptococcus dysgalactiae ssp. equisimilis) adhere to and invade host cells by binding to fibronectin. The fibronectin-binding protein SfbI from GAS acts as an invasin by using a caveolae-mediated mechanism. In the present study we have identified a fibronectin-binding protein, GfbA, from GGS, which functions as an adhesin and invasin. Although there is a high degree of similarity in the C-terminal sequence of SfbI and GfbA, the invasion mechanisms are different. Unlike caveolae-mediated invasion by SfbI-expressing GAS, the GfbA-expressing GGS isolate trigger cytoskeleton rearrangements. Heterologous expression of GfbA on the surface of a commensal Streptococcus gordonii and purified recombinant protein also triggered actin rearrangements. Expression of a truncated GfbA (lacking the aromatic domain) and chimeric GfbA/SfbI protein (replacing the aromatic domain of SfbI with the GfbA aromatic domain) on S. gordonii or recombinant proteins alone showed that the aromatic domain of GfbA is responsible for different invasion mechanisms. This is the first evidence for a biological function of the aromatic domain of fibronectin-binding proteins. Furthermore, we show that streptococci invading via cytoskeleton rearrangements and intracellular trafficking along the classical endocytic pathway are less persistence than streptococci entering via caveolae.
    • The FbaB-type fibronectin-binding protein of Streptococcus pyogenes promotes specific invasion into endothelial cells.

      Amelung, Silva; Nerlich, Andreas; Rohde, Manfred; Spellerberg, Barbara; Cole, Jason N; Nizet, Victor; Chhatwal, Gursharan S; Talay, Susanne R; Department of Medical Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. (2011-08)
      Invasive serotype M3 Streptococcus pyogenes are among the most frequently isolated organisms from patients suffering from invasive streptococcal disease and have the potential to invade primary human endothelial cells (EC) via a rapid and efficient mechanism. FbaB protein, the fibronectin-binding protein expressed by M3 S. pyogenes, was herein identified as a potent invasin for EC. By combining heterologous gene expression with allelic replacement, we demonstrate that FbaB is essential and sufficient to trigger EC invasion via a Rac1-dependent phagocytosis-like uptake. FbaB-mediated uptake follows the classical endocytic pathway with lysosomal destination. FbaB is demonstrated to be a streptococcal invasin exhibiting EC tropism. FbaB thus initiates a process that may contribute to the deep tissue tropism and spread of invasive S. pyogenes isolates into the vascular EC lining.