• Biofilm formation by Salmonella enterica serovar Typhimurium colonizing solid tumours.

      Crull, Katja; Rohde, Manfred; Westphal, Kathrin; Loessner, Holger; Wolf, Kathrin; Felipe-López, Alfonso; Hensel, Michael; Weiss, Siegfried (2011-08)
      Systemic administration of Salmonella enterica serovar Typhimurium to tumour bearing mice results in preferential colonization of the tumours and retardation of tumour growth. Although the bacteria are able to invade the tumour cells in vitro, in tumours they were never detected intracellularly. Ultrastructural analysis of Salmonella-colonized tumours revealed that the bacteria had formed biofilms. Interestingly, depletion of neutrophilic granulocytes drastically reduced biofilm formation. Obviously, bacteria form biofilms in response to the immune reactions of the host. Importantly, we tested Salmonella mutants that were no longer able to form biofilms by deleting central regulators of biofilm formation. Such bacteria could be observed intracellularly in immune cells of the host or in tumour cells. Thus, tumour colonizing S. typhimurium might form biofilms as protection against phagocytosis. Since other bacteria are behaving similarly, solid murine tumours might represent a unique model to study biofilm formation in vivo.
    • DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection.

      Walker, Mark J; Hollands, Andrew; Sanderson-Smith, Martina L; Cole, Jason N; Kirk, Joshua K; Henningham, Anna; McArthur, Jason D; Dinkla, Katrin; Aziz, Ramy K; Kansal, Rita G; et al. (2007-08)
      Most invasive bacterial infections are caused by species that more commonly colonize the human host with minimal symptoms. Although phenotypic or genetic correlates underlying a bacterium's shift to enhanced virulence have been studied, the in vivo selection pressures governing such shifts are poorly understood. The globally disseminated M1T1 clone of group A Streptococcus (GAS) is linked with the rare but life-threatening syndromes of necrotizing fasciitis and toxic shock syndrome. Mutations in the GAS control of virulence regulatory sensor kinase (covRS) operon are associated with severe invasive disease, abolishing expression of a broad-spectrum cysteine protease (SpeB) and allowing the recruitment and activation of host plasminogen on the bacterial surface. Here we describe how bacteriophage-encoded GAS DNase (Sda1), which facilitates the pathogen's escape from neutrophil extracellular traps, serves as a selective force for covRS mutation. The results provide a paradigm whereby natural selection exerted by the innate immune system generates hypervirulent bacterial variants with increased risk of systemic dissemination.
    • Identification of a streptococcal octapeptide motif involved in acute rheumatic fever.

      Dinkla, Katrin; Nitsche-Schmitz, D Patric; Barroso, Vanessa; Reissmann, Silvana; Johansson, Helena M; Frick, Inga-Maria; Rohde, Manfred; Chhatwal, Gursharan S; Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. (2007-06-29)
      Acute rheumatic fever is a serious autoimmune sequela of pharyngitis caused by certain group A streptococci. One mechanism applied by streptococcal strains capable of causing acute rheumatic fever is formation of an autoantigenic complex with human collagen IV. In some geographic regions with a high incidence of acute rheumatic fever pharyngeal carriage of group C and group G streptococci prevails. Examination of such strains revealed the presence of M-like surface proteins that bind human collagen. Using a peptide array and recombinant proteins with targeted amino acid substitutions, we could demonstrate that formation of collagen complexes during streptococcal infections depends on an octapeptide motif, which is present in collagen binding M and M-like proteins of different beta-hemolytic streptococcal species. Mice immunized with streptococcal proteins that contain the collagen binding octapeptide motif developed high serum titers of anti-collagen antibodies. In sera of rheumatic fever patients such a collagen autoimmune response was accompanied by specific reactivity against the collagen-binding proteins, linking the observed effect to clinical cases. Taken together, the data demonstrate that the identified octapeptide motif through its action on collagen plays a crucial role in the pathogenesis of rheumatic fever. Eradication of streptococci that express proteins with the collagen binding motif appears advisable for controlling rheumatic fever.
    • Impact of glutamine transporters on pneumococcal fitness under infection-related conditions.

      Härtel, Tobias; Klein, Matthias; Koedel, Uwe; Rohde, Manfred; Petruschka, Lothar; Hammerschmidt, Sven; Department of Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, D-17487 Greifswald, Germany. (2011-01)
      The genomic analysis of Streptococcus pneumoniae predicted six putative glutamine uptake systems, which are expressed under in vitro conditions, as shown here by reverse transcription-PCR. Four of these operons consist of glnHPQ, while two lack glnH, which encodes a soluble glutamine-binding protein. Here, we studied the impact of two of these glutamine ATP-binding cassette transporters on S. pneumoniae D39 virulence and phagocytosis, which consist of GlnQ and a translationally fused protein of GlnH and GlnP. Mice infected intranasally with D39Δgln0411/0412 showed significantly increased survival times and a significant delay in the development of pneumococcal pneumonia compared to those infected with D39, as observed in real time using bioluminescent pneumococci. In a mouse sepsis model, the mutant D39Δgln0411/0412 showed only moderate but significant attenuation. In contrast, the D39Δgln1098/1099 knockout strain was massively attenuated in the pneumonia and septicemia mouse infection model. To cause pneumonia or sepsis with D39Δgln1098/1099, infection doses 100- to 10,000-fold higher than those used for wild-type strain D39 were required. In an experimental mouse meningitis model, D39Δgln1098/1099 produced decreased levels of white blood cells in cerebrospinal fluid and showed decreased numbers of bacteria in the bloodstream compared to D39 and D39Δgln0411/0412. Phagocytosis experiments revealed significantly decreased intracellular survival rates of mutants D39Δgln1098/1099 and D39Δgln0411/0412 compared to wild-type D39, suggesting that the deficiency of Gln uptake systems impairs resistance to oxidative stress. Taken together, our results demonstrate that both glutamine uptake systems are required for full virulence of pneumococci but exhibit different impacts on the pathogenesis of pneumococci under in vivo conditions.
    • Localization of the C3-Like ADP-ribosyltransferase from Staphylococcus aureus during bacterial invasion of mammalian cells.

      Molinari, Gabriella; Rohde, Manfred; Wilde, Christian; Just, Ingo; Aktories, Klaus; Chhatwal, Gursharan S; Department of Microbial Pathogenesis, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany. (2006-06)
      The C3stau2 exoenzyme from Staphylococcus aureus is a C3-like ADP-ribosyltransferase which possesses no specific receptor-binding domain or translocation unit required for entry in target cells where its substrate is located. Here we show that C3stau2 can reach its target after invasion of staphylococci in eukaryotic cells without needing translocation.
    • M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate.

      Dinkla, K; Cole, J N; Cork, A J; Maamary, P G; McArthur, J D; Chhatwal, G S; Walker, M J; School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia. (2008-08)
      The human protease plasmin plays a crucial role in the capacity of the group A streptococcus (GAS; Streptococcus pyogenes) to initiate invasive disease. The GAS strain NS88.2 was isolated from a case of bacteremia from the Northern Territory of Australia, a region with high rates of GAS invasive disease. Mutagenesis of the NS88.2 plasminogen binding M protein Prp was undertaken to examine the contribution of plasminogen binding and cell surface plasmin acquisition to virulence. The isogenic mutant NS88.2prp was engineered whereby four amino acid residues critical for plasminogen binding were converted to alanine codons in the GAS genome sequence. The mutated residues were reverse complemented to the wild-type sequence to construct GAS strain NS88.2prpRC. In comparison to NS88.2 and NS88.2prpRC, the NS88.2prp mutant exhibited significantly reduced ability to bind human plasminogen and accumulate cell surface plasmin activity during growth in human plasma. Utilizing a humanized plasminogen mouse model of invasive infection, we demonstrate that the capacity to bind plasminogen and accumulate surface plasmin activity plays an essential role in GAS virulence.
    • An optimized in vitro blood-brain barrier model reveals bidirectional transmigration of African trypanosome strains.

      Untucht, Christopher; Rasch, Janine; Fuchs, Elena; Rohde, Manfred; Bergmann, Simone; Steinert, Michael (2011-10)
      The transmigration of African trypanosomes across the human blood-brain barrier (BBB) is the critical step during the course of human African trypanosomiasis. The parasites Trypanosoma brucei gambiense and T. b. rhodesiense are transmitted to humans during the bite of tsetse flies. Trypanosomes multiply within the bloodstream and finally invade the central nervous system (CNS), which leads to the death of untreated patients. This project focused on the mechanisms of trypanosomal traversal across the BBB. In order to establish a suitable in vitro BBB model for parasite transmigration, different human cell lines were used, including ECV304, HBMEC and HUVEC, as well as C6 rat astrocytes. Validation of the BBB models with Escherichia coli HB101 and E. coli K1 revealed that a combination of ECV304 cells seeded on Matrigel as a semi-synthetic basement membrane and C6 astrocytes resulted in an optimal BBB model system. The BBB model showed selective permeability for the pathogenic E. coli K1 strain, and African trypanosomes were able to traverse the optimized ECV304-C6 BBB efficiently. Furthermore, coincubation indicated that paracellular macrophage transmigration does not facilitate trypanosomal BBB traversal. An inverse assembly of the BBB model demonstrated that trypanosomes were also able to transmigrate the optimized ECV304-C6 BBB backwards, indicating the relevance of the CNS as a possible reservoir of a relapsing parasitaemia.
    • Pretubulysin: from hypothetical biosynthetic intermediate to potential lead in tumor therapy.

      Herrmann, Jennifer; Elnakady, Yasser A; Wiedmann, Romina M; Ullrich, Angelika; Rohde, Manfred; Kazmaier, Uli; Vollmar, Angelika M; Müller, Rolf; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany. (2012)
      Pretubulysin is a natural product that is found in strains of myxobacteria in only minute amounts. It represents the first enzyme-free intermediate in the biosynthesis of tubulysins and undergoes post-assembly acylation and oxidation reactions. Pretubulysin inhibits the growth of cultured mammalian cells, as do tubulysins, which are already in advanced preclinical development as anticancer and antiangiogenic agents. The mechanism of action of this highly potent compound class involves the depolymerization of microtubules, thereby inducing mitotic arrest. Supply issues with naturally occurring derivatives can now be circumvented by the total synthesis of pretubulysin, which, in contrast to tubulysin, is synthetically accessible in gram-scale quantities. We show that the simplified precursor is nearly equally potent to the parent compound. Pretubulysin induces apoptosis and inhibits cancer cell migration and tubulin assembly in vitro. Consequently, pretubulysin appears to be an ideal candidate for future development in preclinical trials and is a very promising early lead structure in cancer therapy.