• Host-pathogen interactions in streptococcal immune sequelae.

      Nitsche-Schmitz, D Patric; Chhatwal, Gursharan S; Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany. Patric.Nitsche@helmholtz-hzi.de (2013)
      Otherwise uncomplicated infections with Streptococcus pyogenes can cause two insidious immune sequelae known as post-streptococcal glomerulonephritis (PSGN) and acute rheumatic fever (ARF). These diseases follow with a latency of a few weeks or months after primary infection and are responsible for high mortality and morbidity. PSGN has also been linked to infections with group C streptococci of the species S. equi ssp. zooepidemicus (SESZ). Moreover, there are some indications that infection with group C and G streptococci (GCGS) of the subspecies Streptococcus dysgalactiae ssp. equisimilis (SDSE) leads to ARF. Despite decades of research, the picture of the molecular pathogenesis of streptococcal immune sequelae resembles a jigsaw puzzle. Herein we try to put some of the puzzle bits together that have been collected till date.
    • Identification of a streptococcal octapeptide motif involved in acute rheumatic fever.

      Dinkla, Katrin; Nitsche-Schmitz, D Patric; Barroso, Vanessa; Reissmann, Silvana; Johansson, Helena M; Frick, Inga-Maria; Rohde, Manfred; Chhatwal, Gursharan S; Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. (2007-06-29)
      Acute rheumatic fever is a serious autoimmune sequela of pharyngitis caused by certain group A streptococci. One mechanism applied by streptococcal strains capable of causing acute rheumatic fever is formation of an autoantigenic complex with human collagen IV. In some geographic regions with a high incidence of acute rheumatic fever pharyngeal carriage of group C and group G streptococci prevails. Examination of such strains revealed the presence of M-like surface proteins that bind human collagen. Using a peptide array and recombinant proteins with targeted amino acid substitutions, we could demonstrate that formation of collagen complexes during streptococcal infections depends on an octapeptide motif, which is present in collagen binding M and M-like proteins of different beta-hemolytic streptococcal species. Mice immunized with streptococcal proteins that contain the collagen binding octapeptide motif developed high serum titers of anti-collagen antibodies. In sera of rheumatic fever patients such a collagen autoimmune response was accompanied by specific reactivity against the collagen-binding proteins, linking the observed effect to clinical cases. Taken together, the data demonstrate that the identified octapeptide motif through its action on collagen plays a crucial role in the pathogenesis of rheumatic fever. Eradication of streptococci that express proteins with the collagen binding motif appears advisable for controlling rheumatic fever.