• DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection.

      Walker, Mark J; Hollands, Andrew; Sanderson-Smith, Martina L; Cole, Jason N; Kirk, Joshua K; Henningham, Anna; McArthur, Jason D; Dinkla, Katrin; Aziz, Ramy K; Kansal, Rita G; et al. (2007-08)
      Most invasive bacterial infections are caused by species that more commonly colonize the human host with minimal symptoms. Although phenotypic or genetic correlates underlying a bacterium's shift to enhanced virulence have been studied, the in vivo selection pressures governing such shifts are poorly understood. The globally disseminated M1T1 clone of group A Streptococcus (GAS) is linked with the rare but life-threatening syndromes of necrotizing fasciitis and toxic shock syndrome. Mutations in the GAS control of virulence regulatory sensor kinase (covRS) operon are associated with severe invasive disease, abolishing expression of a broad-spectrum cysteine protease (SpeB) and allowing the recruitment and activation of host plasminogen on the bacterial surface. Here we describe how bacteriophage-encoded GAS DNase (Sda1), which facilitates the pathogen's escape from neutrophil extracellular traps, serves as a selective force for covRS mutation. The results provide a paradigm whereby natural selection exerted by the innate immune system generates hypervirulent bacterial variants with increased risk of systemic dissemination.