• Contribution of plasminogen activation towards the pathogenic potential of oral streptococci.

      Itzek, Andreas; Gillen, Christine M; Fulde, Marcus; Friedrichs, Claudia; Rodloff, Arne C; Chhatwal, Gursharan S; Nitsche-Schmitz, Daniel Patric; Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2010)
      Oral streptococci are a heterogeneous group of human commensals, with a potential to cause serious infections. Activation of plasminogen has been shown to increase the virulence of typical human pathogenic streptococci such as S. pneumoniae. One important factor for plasminogen activation is the streptococcal α-enolase. Here we report that plasminogen activation is also common in oral streptococci species involved in clinical infection and that it depends on the action of human plasminogen activators. The ability to activate plasminogen did not require full conservation of the internal plasminogen binding sequence motif FYDKERKVY of α-enolase that was previously described as crucial for increased plasminogen binding, activation and virulence. Instead, experiments with recombinant α-enolase variants indicate that the naturally occurring variations do not impair plasminogen binding. In spite of these variations in the internal plasminogen binding motif oral streptococci showed similar activation of plasminogen. We conclude that the pathomechanism of plasminogen activation is conserved in oral streptococci that cause infections in human. This may contribute to their opportunistic pathogenic character that is unfurled in certain niches.
    • DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection.

      Walker, Mark J; Hollands, Andrew; Sanderson-Smith, Martina L; Cole, Jason N; Kirk, Joshua K; Henningham, Anna; McArthur, Jason D; Dinkla, Katrin; Aziz, Ramy K; Kansal, Rita G; et al. (2007-08)
      Most invasive bacterial infections are caused by species that more commonly colonize the human host with minimal symptoms. Although phenotypic or genetic correlates underlying a bacterium's shift to enhanced virulence have been studied, the in vivo selection pressures governing such shifts are poorly understood. The globally disseminated M1T1 clone of group A Streptococcus (GAS) is linked with the rare but life-threatening syndromes of necrotizing fasciitis and toxic shock syndrome. Mutations in the GAS control of virulence regulatory sensor kinase (covRS) operon are associated with severe invasive disease, abolishing expression of a broad-spectrum cysteine protease (SpeB) and allowing the recruitment and activation of host plasminogen on the bacterial surface. Here we describe how bacteriophage-encoded GAS DNase (Sda1), which facilitates the pathogen's escape from neutrophil extracellular traps, serves as a selective force for covRS mutation. The results provide a paradigm whereby natural selection exerted by the innate immune system generates hypervirulent bacterial variants with increased risk of systemic dissemination.
    • Identification of a streptococcal octapeptide motif involved in acute rheumatic fever.

      Dinkla, Katrin; Nitsche-Schmitz, D Patric; Barroso, Vanessa; Reissmann, Silvana; Johansson, Helena M; Frick, Inga-Maria; Rohde, Manfred; Chhatwal, Gursharan S; Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. (2007-06-29)
      Acute rheumatic fever is a serious autoimmune sequela of pharyngitis caused by certain group A streptococci. One mechanism applied by streptococcal strains capable of causing acute rheumatic fever is formation of an autoantigenic complex with human collagen IV. In some geographic regions with a high incidence of acute rheumatic fever pharyngeal carriage of group C and group G streptococci prevails. Examination of such strains revealed the presence of M-like surface proteins that bind human collagen. Using a peptide array and recombinant proteins with targeted amino acid substitutions, we could demonstrate that formation of collagen complexes during streptococcal infections depends on an octapeptide motif, which is present in collagen binding M and M-like proteins of different beta-hemolytic streptococcal species. Mice immunized with streptococcal proteins that contain the collagen binding octapeptide motif developed high serum titers of anti-collagen antibodies. In sera of rheumatic fever patients such a collagen autoimmune response was accompanied by specific reactivity against the collagen-binding proteins, linking the observed effect to clinical cases. Taken together, the data demonstrate that the identified octapeptide motif through its action on collagen plays a crucial role in the pathogenesis of rheumatic fever. Eradication of streptococci that express proteins with the collagen binding motif appears advisable for controlling rheumatic fever.
    • Localization of the C3-Like ADP-ribosyltransferase from Staphylococcus aureus during bacterial invasion of mammalian cells.

      Molinari, Gabriella; Rohde, Manfred; Wilde, Christian; Just, Ingo; Aktories, Klaus; Chhatwal, Gursharan S; Department of Microbial Pathogenesis, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany. (2006-06)
      The C3stau2 exoenzyme from Staphylococcus aureus is a C3-like ADP-ribosyltransferase which possesses no specific receptor-binding domain or translocation unit required for entry in target cells where its substrate is located. Here we show that C3stau2 can reach its target after invasion of staphylococci in eukaryotic cells without needing translocation.
    • M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate.

      Dinkla, K; Cole, J N; Cork, A J; Maamary, P G; McArthur, J D; Chhatwal, G S; Walker, M J; School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia. (2008-08)
      The human protease plasmin plays a crucial role in the capacity of the group A streptococcus (GAS; Streptococcus pyogenes) to initiate invasive disease. The GAS strain NS88.2 was isolated from a case of bacteremia from the Northern Territory of Australia, a region with high rates of GAS invasive disease. Mutagenesis of the NS88.2 plasminogen binding M protein Prp was undertaken to examine the contribution of plasminogen binding and cell surface plasmin acquisition to virulence. The isogenic mutant NS88.2prp was engineered whereby four amino acid residues critical for plasminogen binding were converted to alanine codons in the GAS genome sequence. The mutated residues were reverse complemented to the wild-type sequence to construct GAS strain NS88.2prpRC. In comparison to NS88.2 and NS88.2prpRC, the NS88.2prp mutant exhibited significantly reduced ability to bind human plasminogen and accumulate cell surface plasmin activity during growth in human plasma. Utilizing a humanized plasminogen mouse model of invasive infection, we demonstrate that the capacity to bind plasminogen and accumulate surface plasmin activity plays an essential role in GAS virulence.
    • Role of glucose and CcpA in capsule expression and virulence of Streptococcus suis.

      Willenborg, J; Fulde, M; de Greeff, A; Rohde, Manfred; Smith, H E; Valentin-Weigand, P; Goethe, R; Institute for Microbiology, University of Veterinary Medicine, Hannover, Germany. (2011-06)
      Streptococcus suis is one of the most important pathogens in pigs and is also an emerging zoonotic agent. After crossing the epithelial barrier, S. suis causes bacteraemia, resulting in meningitis, endocarditis and bronchopneumonia. Since the host environment seems to be an important regulatory component for virulence, we related expression of virulence determinants of S. suis to glucose availability during growth and to the sugar metabolism regulator catabolite control protein A (CcpA). We found that expression of the virulence-associated genes arcB, representing arcABC operon expression, cps2A, representing capsular locus expression, as well as sly, ofs, sao and epf, differed significantly between exponential and early stationary growth of a highly virulent serotype 2 strain. Deletion of ccpA altered the expression of the surface-associated virulence factors arcB, sao and eno, as well as the two currently proven virulence factors in pigs, ofs and cps2A, in early exponential growth. Global expression analysis using a cDNA expression array revealed 259 differentially expressed genes in early exponential growth, of which 141 were more highly expressed in the CcpA mutant strain 10ΔccpA and 118 were expressed to a lower extent. Interestingly, among the latter genes, 18 could be related to capsule and cell wall synthesis. Correspondingly, electron microscopy characterization of strain 10ΔccpA revealed a markedly reduced thickness of the capsule. This phenotype correlated with enhanced binding to porcine plasma proteins and a reduced resistance to killing by porcine neutrophils. Taken together, our data demonstrate that CcpA has a significant effect on the capsule synthesis and virulence properties of S. suis.