• Region specific and worldwide distribution of collagen-binding M proteins with PARF motifs among human pathogenic streptococcal isolates.

      Reissmann, Silvana; Gillen, Christine M; Fulde, Marcus; Bergmann, René; Nerlich, Andreas; Rajkumari, Reena; Brahmadathan, Kootallur N; Chhatwal, Gursharan S; Nitsche-Schmitz, D Patric; Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2012)
      Some of the variety of Streptococcus pyogenes and Streptococcus dysgalactiae ssp. equisimilis (SDSE) M proteins act as collagen-binding adhesins that facilitate acute infection. Moreover, their potential to trigger collagen autoimmunity has been implicated in the pathogenesis of acute rheumatic fever and attributed to a collagen-binding motif called PARF (peptide associated with rheumatic fever). For the first time we determine the rate of clinical isolates with collagen-binding M proteins that use a PARF motif (A/T/E)XYLXX(L/F)N in a defined geographic region, Vellore in South India. In this region both, incidence of streptococcal infections and prevalence of acute rheumatic fever are high. M proteins with PARF motif conferred collagen-binding activity to 3.9% of 153 S. pyogenes and 10.6% of 255 SDSE clinical isolates from Vellore. The PARF motif occurred in three S. pyogenes and 22 SDSE M protein types. In one of the S. pyogenes and five of the SDSE M proteins that contained the motif, collagen-binding was impaired, due to influences of other parts of the M protein molecule. The accumulated data on the collagen binding activity of certain M protein types allowed a reanalysis of published worldwide emm-typing data with the aim to estimate the rates of isolates that bind collagen via PARF. The results indicate that M proteins, which bind collagen via a PARF motif, are epidemiologically relevant in human infections, not only in Vellore. It is imperative to include the most relevant collagen-binding M types in vaccines. But when designing M protein based vaccines it should be considered that collagen binding motifs within the vaccine antigen remain potential risk factors.
    • Genome sequence of the flexirubin-pigmented soil bacterium Niabella soli type strain (JS13-8T)

      Anderson, Iain; Munk, Christine; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Tice, Hope; Glavina Del Rio, Tijana; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; et al. (2012)
    • Pretubulysin: from hypothetical biosynthetic intermediate to potential lead in tumor therapy.

      Herrmann, Jennifer; Elnakady, Yasser A; Wiedmann, Romina M; Ullrich, Angelika; Rohde, Manfred; Kazmaier, Uli; Vollmar, Angelika M; Müller, Rolf; Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany. (2012)
      Pretubulysin is a natural product that is found in strains of myxobacteria in only minute amounts. It represents the first enzyme-free intermediate in the biosynthesis of tubulysins and undergoes post-assembly acylation and oxidation reactions. Pretubulysin inhibits the growth of cultured mammalian cells, as do tubulysins, which are already in advanced preclinical development as anticancer and antiangiogenic agents. The mechanism of action of this highly potent compound class involves the depolymerization of microtubules, thereby inducing mitotic arrest. Supply issues with naturally occurring derivatives can now be circumvented by the total synthesis of pretubulysin, which, in contrast to tubulysin, is synthetically accessible in gram-scale quantities. We show that the simplified precursor is nearly equally potent to the parent compound. Pretubulysin induces apoptosis and inhibits cancer cell migration and tubulin assembly in vitro. Consequently, pretubulysin appears to be an ideal candidate for future development in preclinical trials and is a very promising early lead structure in cancer therapy.
    • Complete genome sequence of the thermophilic sulfur-reducer Desulfurobacterium thermolithotrophum type strain (BSA(T)) from a deep-sea hydrothermal vent.

      Göker, Markus; Daligault, Hajnalka; Mwirichia, Romano; Lapidus, Alla; Lucas, Susan; Deshpande, Shweta; Pagani, Ioanna; Tapia, Roxanne; Cheng, Jan-Fang; Goodwin, Lynne; et al. (2011-12-31)
      Desulfurobacterium thermolithotrophum L'Haridon et al. 1998 is the type species of the genus Desulfurobacterium which belongs to the family Desulfurobacteriaceae. The species is of interest because it represents the first thermophilic bacterium that can act as a primary producer in the temperature range of 45-75 °C (optimum 70°C) and is incapable of growing under microaerophilic conditions. Strain BSA(T) preferentially synthesizes high-melting-point fatty acids (C(18) and C(20)) which is hypothesized to be a strategy to ensure the functionality of the membrane at high growth temperatures. This is the second completed genome sequence of a member of the family Desulfurobacteriaceae and the first sequence from the genus Desulfurobacterium. The 1,541,968 bp long genome harbors 1,543 protein-coding and 51 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Genome sequence of the filamentous, gliding Thiothrix nivea neotype strain (JP2(T)).

      Lapidus, Alla; Nolan, Matt; Lucas, Susan; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; et al. (2011-12-31)
      Thiothrix nivea (Rabenhorst 1865) Winogradsky 1888 (Approved Lists 1980) emend. Larkin and Shinabarger 1983 is the type species of the genus Thiothrix in the family Thiotrichaceae. The species is of interest not only because of its isolated location in the yet to be genomically characterized region of the tree of life, but also because of its life-style with gliding gonidia, the multilayer sheath, rosettes, and the embedded sulfur granules. Strain JP2(T) is the neotype strain of the species which was first observed by Rabenhorst in 1865 and later reclassified by Winogradsky in 1888 into the then novel genus Thiothrix. This is the first completed (improved-high-quality-draft) genome sequence to be published of a member of the family Thiotrichaceae. The genome in its current assembly consists of 15 contigs in four scaffolds with a total of 4,691,711 bp bearing 4,542 protein-coding and 52 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • On the origin of the electrostatic surface potential of Aspergillus niger spores in acidic environments.

      Wargenau, Andreas; Fleissner, André; Bolten, Christoph Josef; Rohde, Manfred; Kampen, Ingo; Kwade, Arno; Institut für Partikeltechnik, Technische Universität Braunschweig, Volkmaroder Straße 5, D-38104 Braunschweig, Germany. wargenau@a-wargenau.de (2011-12)
      The electrostatic surface potential of fungal spores is generally regarded as potentially influencing spore aggregation and pellet formation in submerged cultures of filamentous fungi. Spores of Aspergillus niger are typically characterized by negative zeta potentials over a wide range of pH values. In this study, this particular behavior is ascribed to the presence of an extensive melanin coating. It is proposed on the basis of zeta potential and pigment extraction experiments that this outermost layer affects the pH-dependent surface potential in two manners: (i) by the addition of negative charges to the spore surface and (ii) by the pH-dependent release of melanin pigment. Chemical analyses revealed that deprotonation of melanin-bound carboxyl groups is most probably responsible for pigment release under acidic conditions. These findings were incorporated into a simple model which has the ability to qualitatively explain the results of zeta potential experiments and, moreover, to provide the basis for quantitative investigations on the role of electrostatics in spore aggregation.
    • Complete genome sequence of Tolumonas auensis type strain (TA 4).

      Chertkov, Olga; Copeland, Alex; Lucas, Susan; Lapidus, Alla; Berry, Kerrie W; Detter, John C; Del Rio, Tijana Glavina; Hammon, Nancy; Dalin, Eileen; Tice, Hope; et al. (2011-10-15)
      Tolumonas auensis Fischer-Romero et al. 1996 is currently the only validly named species of the genus Tolumonas in the family Aeromonadaceae. The strain is of interest because of its ability to produce toluene from phenylalanine and other phenyl precursors, as well as phenol from tyrosine. This is of interest because toluene is normally considered to be a tracer of anthropogenic pollution in lakes, but T. auensis represents a biogenic source of toluene. Other than Aeromonas hydrophila subsp. hydrophila, T. auensis strain TA 4(T) is the only other member in the family Aeromonadaceae with a completely sequenced type-strain genome. The 3,471,292 bp chromosome with a total of 3,288 protein-coding and 116 RNA genes was sequenced as part of the DOE Joint Genome Institute Program JBEI 2008.
    • Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21).

      Chang, Yun-Juan; Land, Miriam; Hauser, Loren; Chertkov, Olga; Del Rio, Tijana Glavina; Nolan, Matt; Copeland, Alex; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; et al. (2011-10-15)
      Ktedonobacter racemifer corrig. Cavaletti et al. 2007 is the type species of the genus Ktedonobacter, which in turn is the type genus of the family Ktedonobacteraceae, the type family of the order Ktedonobacterales within the class Ktedonobacteria in the phylum 'Chloroflexi'. Although K. racemifer shares some morphological features with the actinobacteria, it is of special interest because it was the first cultivated representative of a deep branching unclassified lineage of otherwise uncultivated environmental phylotypes tentatively located within the phylum 'Chloroflexi'. The aerobic, filamentous, non-motile, spore-forming Gram-positive heterotroph was isolated from soil in Italy. The 13,661,586 bp long non-contiguous finished genome consists of ten contigs and is the first reported genome sequence from a member of the class Ktedonobacteria. With its 11,453 protein-coding and 87 RNA genes, it is the largest prokaryotic genome reported so far. It comprises a large number of over-represented COGs, particularly genes associated with transposons, causing the genetic redundancy within the genome being considerably larger than expected by chance. This work is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Non-contiguous finished genome sequence of the opportunistic oral pathogen Prevotella multisaccharivorax type strain (PPPA20).

      Pati, Amrita; Gronow, Sabine; Lu, Megan; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; et al. (2011-10-15)
      Prevotella multisaccharivorax Sakamoto et al. 2005 is a species of the large genus Prevotella, which belongs to the family Prevotellaceae. The species is of medical interest because its members are able to cause diseases in the human oral cavity such as periodontitis, root caries and others. Although 77 Prevotella genomes have already been sequenced or are targeted for sequencing, this is only the second completed genome sequence of a type strain of a species within the genus Prevotella to be published. The 3,388,644 bp long genome is assembled in three non-contiguous contigs, harbors 2,876 protein-coding and 75 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and Rainey, 2010.

      Klenk, Hans-Peter; Lapidus, Alla; Chertkov, Olga; Copeland, Alex; Del Rio, Tijana Glavina; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; et al. (2011-10-15)
      Bacillus tusciae Bonjour & Aragno 1994 is a hydrogen-oxidizing, thermoacidophilic spore former that lives as a facultative chemolithoautotroph in solfataras. Although 16S rRNA gene sequencing was well established at the time of the initial description of the organism, 16S sequence data were not available and the strain was placed into the genus Bacillus based on limited chemotaxonomic information. Despite the now obvious misplacement of strain T2 as a member of the genus Bacillus in 16S rRNA-based phylogenetic trees, the misclassification remained uncorrected for many years, which was likely due to the extremely difficult, analysis-hampering cultivation conditions and poor growth rate of the strain. Here we provide a taxonomic re-evaluation of strain T2T (= DSM 2912 = NBRC 15312) and propose its reclassification as the type strain of a new species, Kyrpidia tusciae, and the type species of the new genus Kyrpidia, which is a sister-group of Alicyclobacillus. The family Alicyclobacillaceae da Costa and Rainey, 2010 is emended. The 3,384,766 bp genome with its 3,323 protein-coding and 78 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of the gliding, heparinolytic Pedobacter saltans type strain (113).

      Liolios, Konstantinos; Sikorski, Johannes; Lu, Meagan; Nolan, Matt; Lapidus, Alla; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; et al. (2011-10-15)
      Pedobacter saltans Steyn et al. 1998 is one of currently 32 species in the genus Pedobacter within the family Sphingobacteriaceae. The species is of interest for its isolated location in the tree of life. Like other members of the genus P. saltans is heparinolytic. Cells of P. saltans show a peculiar gliding, dancing motility and can be distinguished from other Pedobacter strains by their ability to utilize glycerol and the inability to assimilate D-cellobiose. The genome presented here is only the second completed genome sequence of a type strain from a member of the family Sphingobacteriaceae to be published. The 4,635,236 bp long genome with its 3,854 protein-coding and 67 RNA genes consists of one chromosome, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Genome sequence of the moderately thermophilic halophile Flexistipes sinusarabici strain (MAS10).

      Lapidus, Alla; Chertkov, Olga; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; et al. (2011-10-15)
      Flexistipes sinusarabici Fiala et al. 2000 is the type species of the genus Flexistipes in the family Deferribacteraceae. The species is of interest because of its isolated phylogenetic location in a genomically under-characterized region of the tree of life, and because of its origin from a multiply extreme environment; the Atlantis Deep brines of the Red Sea, where it had to struggle with high temperatures, high salinity, and a high concentrations of heavy metals. This is the fourth completed genome sequence to be published of a type strain of the family Deferribacteraceae. The 2,526,590 bp long genome with its 2,346 protein-coding and 53 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of the gliding freshwater bacterium Fluviicola taffensis type strain (RW262).

      Woyke, Tanja; Chertkov, Olga; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Del Rio, Tijana Glavina; Tice, Hope; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; et al. (2011-10-15)
      Fluviicola taffensis O'Sullivan et al. 2005 belongs to the monotypic genus Fluviicola within the family Cryomorphaceae. The species is of interest because of its isolated phylogenetic location in the genome-sequenced fraction of the tree of life. Strain RW262(T) forms a monophyletic lineage with uncultivated bacteria represented in freshwater 16S rRNA gene libraries. A similar phylogenetic differentiation occurs between freshwater and marine bacteria in the family Flavobacteriaceae, a sister family to Cryomorphaceae. Most remarkable is the inability of this freshwater bacterium to grow in the presence of Na(+) ions. All other genera in the family Cryomorphaceae are from marine habitats and have an absolute requirement for Na(+) ions or natural sea water. F. taffensis is the first member of the family Cryomorphaceae with a completely sequenced and publicly available genome. The 4,633,577 bp long genome with its 4,082 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Crystallization and preliminary X-ray diffraction analysis of phosphoglycerate kinase from Streptococcus pneumoniae.

      Bernardo-García, Noelia; Bartual, Sergio G; Fulde, Marcus; Bergmann, Simone; Hermoso, Juan A; Department of Crystallography and Structural Biology, Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain. (2011-10-01)
      Phosphoglycerate kinase (PGK) is a widespread two-domain enzyme that plays a critical role in the glycolytic pathway. Several glycolytic enzymes from streptococci have been identified as surface-exposed proteins that are involved in streptococcal virulence by their ability to bind host proteins. This binding allows pneumococcal cells to disseminate through the epithelial and endothelial layers. Crystallization of PGK from Streptococcus pneumoniae yielded orthorhombic crystals (space group I222, unit-cell parameters a = 62.73, b = 75.38, c = 83.63 Å). However, the unit cell of these crystals was not compatible with the presence of full-length PGK. Various analytical methods showed that only the N-terminal domain of PGK was present in the I222 crystals. The ternary complex of PGK with adenylyl imidodiphosphate (AMP-PNP) and 3-phospho-D-glycerate (3PGA) produced monoclinic crystals (space group P2(1), unit-cell parameters a = 40.35, b = 78.23, c = 59.03 Å, β = 96.34°). Molecular replacement showed that this new crystal form contained full-length PGK, thereby indicating the relevance of including substrates in order to avoid proteolysis during the crystallization process.
    • An optimized in vitro blood-brain barrier model reveals bidirectional transmigration of African trypanosome strains.

      Untucht, Christopher; Rasch, Janine; Fuchs, Elena; Rohde, Manfred; Bergmann, Simone; Steinert, Michael (2011-10)
      The transmigration of African trypanosomes across the human blood-brain barrier (BBB) is the critical step during the course of human African trypanosomiasis. The parasites Trypanosoma brucei gambiense and T. b. rhodesiense are transmitted to humans during the bite of tsetse flies. Trypanosomes multiply within the bloodstream and finally invade the central nervous system (CNS), which leads to the death of untreated patients. This project focused on the mechanisms of trypanosomal traversal across the BBB. In order to establish a suitable in vitro BBB model for parasite transmigration, different human cell lines were used, including ECV304, HBMEC and HUVEC, as well as C6 rat astrocytes. Validation of the BBB models with Escherichia coli HB101 and E. coli K1 revealed that a combination of ECV304 cells seeded on Matrigel as a semi-synthetic basement membrane and C6 astrocytes resulted in an optimal BBB model system. The BBB model showed selective permeability for the pathogenic E. coli K1 strain, and African trypanosomes were able to traverse the optimized ECV304-C6 BBB efficiently. Furthermore, coincubation indicated that paracellular macrophage transmigration does not facilitate trypanosomal BBB traversal. An inverse assembly of the BBB model demonstrated that trypanosomes were also able to transmigrate the optimized ECV304-C6 BBB backwards, indicating the relevance of the CNS as a possible reservoir of a relapsing parasitaemia.
    • Kroppenstedtia eburnea gen. nov., sp. nov., a thermoactinomycete isolated by environmental screening, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006 emend. Yassin et al. 2009.

      von Jan, Mathias; Riegger, Nicole; Pötter, Gabriele; Schumann, Peter; Verbarg, Susanne; Spröer, Cathrin; Rohde, Manfred; Lauer, Bettina; Labeda, David P; Klenk, Hans-Peter (2011-09)
      A Gram-positive, spore-forming, aerobic, filamentous bacterium, strain JFMB-ATE(T), was isolated in 2008 during environmental screening of a plastic surface in grade C in a contract manufacturing organization in southern Germany. The isolate grew at temperatures of 25-50 °C and at pH 5.0-8.5, forming ivory-coloured colonies with sparse white aerial mycelia. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the family Thermoactinomycetaceae, except that the cell-wall peptidoglycan contained LL-diaminopimelic acid, while all previously described members of this family display this diagnostic diamino acid in meso-conformation. The DNA G+C content of the novel strain was 54.6 mol%, the main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol, and the major menaquinone was MK-7. The major fatty acids had saturated C₁₄-C₁₆ branched chains. No diagnostic sugars were detected. Based on the chemotaxonomic results and 16S rRNA gene sequence analysis, the isolate is proposed to represent a novel genus and species, Kroppenstedtia eburnea gen. nov. sp. nov. The type strain is JFMB-ATE(T) ( = DSM 45196(T)  = NRRL B-24804(T)  = CCUG 59226(T)).
    • Biofilm formation by Salmonella enterica serovar Typhimurium colonizing solid tumours.

      Crull, Katja; Rohde, Manfred; Westphal, Kathrin; Loessner, Holger; Wolf, Kathrin; Felipe-López, Alfonso; Hensel, Michael; Weiss, Siegfried (2011-08)
      Systemic administration of Salmonella enterica serovar Typhimurium to tumour bearing mice results in preferential colonization of the tumours and retardation of tumour growth. Although the bacteria are able to invade the tumour cells in vitro, in tumours they were never detected intracellularly. Ultrastructural analysis of Salmonella-colonized tumours revealed that the bacteria had formed biofilms. Interestingly, depletion of neutrophilic granulocytes drastically reduced biofilm formation. Obviously, bacteria form biofilms in response to the immune reactions of the host. Importantly, we tested Salmonella mutants that were no longer able to form biofilms by deleting central regulators of biofilm formation. Such bacteria could be observed intracellularly in immune cells of the host or in tumour cells. Thus, tumour colonizing S. typhimurium might form biofilms as protection against phagocytosis. Since other bacteria are behaving similarly, solid murine tumours might represent a unique model to study biofilm formation in vivo.
    • The FbaB-type fibronectin-binding protein of Streptococcus pyogenes promotes specific invasion into endothelial cells.

      Amelung, Silva; Nerlich, Andreas; Rohde, Manfred; Spellerberg, Barbara; Cole, Jason N; Nizet, Victor; Chhatwal, Gursharan S; Talay, Susanne R; Department of Medical Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany. (2011-08)
      Invasive serotype M3 Streptococcus pyogenes are among the most frequently isolated organisms from patients suffering from invasive streptococcal disease and have the potential to invade primary human endothelial cells (EC) via a rapid and efficient mechanism. FbaB protein, the fibronectin-binding protein expressed by M3 S. pyogenes, was herein identified as a potent invasin for EC. By combining heterologous gene expression with allelic replacement, we demonstrate that FbaB is essential and sufficient to trigger EC invasion via a Rac1-dependent phagocytosis-like uptake. FbaB-mediated uptake follows the classical endocytic pathway with lysosomal destination. FbaB is demonstrated to be a streptococcal invasin exhibiting EC tropism. FbaB thus initiates a process that may contribute to the deep tissue tropism and spread of invasive S. pyogenes isolates into the vascular EC lining.
    • Complete genome sequence of Treponema succinifaciens type strain (6091).

      Han, Cliff; Gronow, Sabine; Teshima, Hazuki; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Zeytun, Ahmed; et al. (2011-07-01)
      Treponema succinifaciens Cwyk and Canale-Parola 1981 is of interest because this strictly anaerobic, apathogenic member of the genus Treponema oxidizes carbohydrates and couples the Embden-Meyerhof pathway via activity of a pyruvate-formate lyase to the production of acetyl-coenzyme A and formate. This feature separates this species from most other anaerobic spirochetes. The genome of T. succinifaciens 6091(T) is only the second completed and published type strain genome from the genus Treponema in the family Spirochaetaceae. The 2,897,425 bp long genome with one plasmid harbors 2,723 protein-coding and 63 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
    • Complete genome sequence of Tsukamurella paurometabola type strain (no. 33).

      Munk, A Christine; Lapidus, Alla; Lucas, Susan; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Del Rio, Tijana Glavina; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; et al. (2011-07-01)
      Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The species is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung infection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.