Now showing items 1-20 of 78

    • Recombinant protein expression by targeting pre-selected chromosomal loci

      Nehlsen, Kristina; Schucht, Roland; da Gama-Norton, Leonor; Krömer, Wolfgang; Baer, Alexandra; Cayli, Aziz; Hauser, Hansjörg; Wirth, Dagmar (2009-12-14)
      Abstract Background Recombinant protein expression in mammalian cells is mostly achieved by stable integration of transgenes into the chromosomal DNA of established cell lines. The chromosomal surroundings have strong influences on the expression of transgenes. The exploitation of defined loci by targeting expression constructs with different regulatory elements is an approach to design high level expression systems. Further, this allows to evaluate the impact of chromosomal surroundings on distinct vector constructs. Results We explored antibody expression upon targeting diverse expression constructs into previously tagged loci in CHO-K1 and HEK293 cells that exhibit high reporter gene expression. These loci were selected by random transfer of reporter cassettes and subsequent screening. Both, retroviral infection and plasmid transfection with eGFP or antibody expression cassettes were employed for tagging. The tagged cell clones were screened for expression and single copy integration. Cell clones producing > 20 pg/cell in 24 hours could be identified. Selected integration sites that had been flanked with heterologous recombinase target sites (FRTs) were targeted by Flp recombinase mediated cassette exchange (RMCE). The results give proof of principle for consistent protein expression upon RMCE. Upon targeting antibody expression cassettes 90-100% of all resulting cell clones showed correct integration. Antibody production was found to be highly consistent within the individual cell clones as expected from their isogenic nature. However, the nature and orientation of expression control elements revealed to be critical. The impact of different promoters was examined with the tag-and-targeting approach. For each of the chosen promoters high expression sites were identified. However, each site supported the chosen promoters to a different extent, indicating that the strength of a particular promoter is dominantly defined by its chromosomal context. Conclusion RMCE provides a powerful method to specifically design vectors for optimized gene expression with high accuracy. Upon considering the specific requirements of chromosomal sites this method provides a unique tool to exploit such sites for predictable expression of biotechnologically relevant proteins such as antibodies.
    • Towards rational engineering of cells: Recombinant gene expression in defined chromosomal loci

      Nehlsen, Kristina; da Gama-Norton, Leonor; Schucht, Roland; Hauser, Hansjörg; Wirth, Dagmar (2011-11-22)
    • Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data

      Martins, José P; Santos, Jorge M; Almeida, Joana M d; Filipe, Mariana A; de Almeida, Mariana V T; Almeida, Sílvia C C; Água-Doce, Ana; Varela, Alexandre; Gilljam, Mari; Stellan, Birgitta; et al. (2014-01-17)
      Abstract Introduction Standardization of mesenchymal stromal cells (MSCs) manufacturing is urgently needed to enable translational activities and ultimately facilitate comparison of clinical trial results. In this work we describe the adaptation of a proprietary method for isolation of a specific umbilical cord tissue-derived population of MSCs, herein designated by its registered trademark as UCX®, towards the production of an advanced therapy medicinal product (ATMP). Methods The adaptation focused on different stages of production, from cell isolation steps to cell culturing and cryopreservation. The origin and quality of materials and reagents were considered and steps for avoiding microbiological and endotoxin contamination of the final cell product were implemented. Cell isolation efficiency, MSCs surface markers and genetic profiles, originating from the use of different medium supplements, were compared. The ATMP-compliant UCX® product was also cryopreserved avoiding the use of dimethyl sulfoxide, an added benefit for the use of these cells as an ATMP. Cells were analyzed for expansion capacity and longevity. The final cell product was further characterized by flow cytometry, differentiation potential, and tested for contaminants at various passages. Finally, genetic stability and immune properties were also analyzed. Results The isolation efficiency of UCX® was not affected by the introduction of clinical grade enzymes. Furthermore, isolation efficiencies and phenotype analyses revealed advantages in the use of human serum in cell culture as opposed to human platelet lysate. Initial decontamination of the tissue followed by the use of mycoplasma- and endotoxin-free materials and reagents in cell isolation and subsequent culture, enabled the removal of antibiotics during cell expansion. UCX®-ATMP maintained a significant expansion potential of 2.5 population doublings per week up to passage 15 (P15). They were also efficiently cryopreserved in a DMSO-free cryoprotectant medium with approximately 100% recovery and 98% viability post-thaw. Additionally, UCX®-ATMP were genetically stable upon expansion (up to P15) and maintained their immunomodulatory properties. Conclusions We have successfully adapted a method to consistently isolate, expand and cryopreserve a well-characterized population of human umbilical cord tissue-derived MSCs (UCX®), in order to obtain a cell product that is compliant with cell therapy. Here, we present quality and safety data that support the use of the UCX® as an ATMP, according to existing international guidelines.
    • DNA methylation regulates expression of VEGF-R2 (KDR) and VEGF-R3 (FLT4).

      Quentmeier, Hilmar; Eberth, Sonja; Romani, Julia; Weich, Herbert A; Zaborski, Margarete; Drexler, Hans G; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2012-01-17)
      Vascular Endothelial Growth Factors (VEGFs) and their receptors (VEGF-Rs) are important regulators for angiogenesis and lymphangiogenesis. VEGFs and VEGF-Rs are not only expressed on endothelial cells but also on various subtypes of solid tumors and leukemias contributing to the growth of the malignant cells. This study was performed to examine whether VEGF-R2 (KDR) and VEGF-R3 (FLT4) are regulated by DNA methylation.
    • 22nd European Society for Animal Cell Technology (ESACT) Meeting on Cell Based Technologies Vienna, Austria. 15-18 May 2011. Abstracts.

      Hauser, Hansjörg; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2011-11-22)
    • The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: Highlights from a multi-level omics approach

      Poblete-Castro, Ignacio; Escapa, Isabel F; Jäger, Christian; Puchalka, Jacek; Chi Lam, Carolyn M; Schomburg, Dietmar; Prieto, María A; Martins dos Santos, Vítor A (2012-03-20)
      Abstract Background Pseudomonas putida KT2442 is a natural producer of polyhydroxyalkanoates (PHAs), which can substitute petroleum-based non-renewable plastics and form the basis for the production of tailor-made biopolymers. However, despite the substantial body of work on PHA production by P. putida strains, it is not yet clear how the bacterium re-arranges its whole metabolism when it senses the limitation of nitrogen and the excess of fatty acids as carbon source, to result in a large accumulation of PHAs within the cell. In the present study we investigated the metabolic response of KT2442 using a systems biology approach to highlight the differences between single- and multiple-nutrient-limited growth in chemostat cultures. Results We found that 26, 62, and 81% of the cell dry weight consist of PHA under conditions of carbon, dual, and nitrogen limitation, respectively. Under nitrogen limitation a specific PHA production rate of 0.43 (g·(g·h)-1) was obtained. The residual biomass was not constant for dual- and strict nitrogen-limiting growth, showing a different feature in comparison to other P. putida strains. Dual limitation resulted in patterns of gene expression, protein level, and metabolite concentrations that substantially differ from those observed under exclusive carbon or nitrogen limitation. The most pronounced differences were found in the energy metabolism, fatty acid metabolism, as well as stress proteins and enzymes belonging to the transport system. Conclusion This is the first study where the interrelationship between nutrient limitations and PHA synthesis has been investigated under well-controlled conditions using a system level approach. The knowledge generated will be of great assistance for the development of bioprocesses and further metabolic engineering work in this versatile organism to both enhance and diversify the industrial production of PHAs.
    • DNA methylation regulates expression of VEGF-R2 (KDR) and VEGF-R3 (FLT4)

      Quentmeier, Hilmar; Eberth, Sonja; Romani, Julia; Weich, Herbert A; Zaborski, Margarete; Drexler, Hans G (2012-01-17)
      Abstract Background Vascular Endothelial Growth Factors (VEGFs) and their receptors (VEGF-Rs) are important regulators for angiogenesis and lymphangiogenesis. VEGFs and VEGF-Rs are not only expressed on endothelial cells but also on various subtypes of solid tumors and leukemias contributing to the growth of the malignant cells. This study was performed to examine whether VEGF-R2 (KDR) and VEGF-R3 (FLT4) are regulated by DNA methylation. Methods Real-time (RT) PCR analysis was performed to quantify KDR and FLT4 expression in some ninety leukemia/lymphoma cell lines, human umbilical vein endothelial cells (HUVECs) and dermal microvascular endothelial cells (HDMECs). Western blot analyses and flow cytometric analyses confirmed results at the protein level. After bisulfite conversion of DNA we determined the methylation status of KDR and FLT4 by DNA sequencing and by methylation specific PCR (MSP). Western blot analyses were performed to examine the effect of VEGF-C on p42/44 MAPK activation. Results Expression of KDR and FLT4 was observed in cell lines from various leukemic entities, but not in lymphoma cell lines: 16% (10/62) of the leukemia cell lines expressed KDR, 42% (27/65) were FLT4 positive. None of thirty cell lines representing six lymphoma subtypes showed more than marginal expression of KDR or FLT4. Western blot analyses confirmed KDR and FLT4 protein expression in HDMECs, HUVECs and in cell lines with high VEGF-R mRNA levels. Mature VEGF-C induced p42/44 MAPK activation in the KDR- /FLT4+ cell line OCI-AML1 verifying the model character of this cell line for VEGF-C signal transduction studies. Bisulfite sequencing and MSP revealed that GpG islands in the promoter regions of KDR and FLT4 were unmethylated in HUVECs, HDMECs and KDR + and FLT4 + cell lines, whereas methylated cell lines did not express these genes. In hypermethylated cell lines, KDR and FLT4 were re-inducible by treatment with the DNA demethylating agent 5-Aza-2'deoxycytidine, confirming epigenetic regulation of both genes. Conclusions Our data show that VEGF-Rs KDR and FLT4 are silenced by DNA methylation. However, if the promoters are unmethylated, other factors (e.g. transactivation factors) determine the extent of KDR and FLT4 expression.
    • Caveolin-1 influences human influenza A virus (H1N1) multiplication in cell culture.

      Sun, Lijing; Hemgård, Gun-Viol; Susanto, Sony A; Wirth, Manfred; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2010)
      The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication.
    • Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data.

      Martins, José Paulo; Santos, Jorge Miguel; de Almeida, Joana Marto; Filipe, Mariana Alves; de Almeida, Mariana Vargas Teixeira; Almeida, Sílvia Cristina Paiva; Água-Doce, Ana; Varela, Alexandre; Gilljam, Mari; Stellan, Birgitta; et al. (2014)
      Standardization of mesenchymal stromal cells (MSCs) manufacturing is urgently needed to enable translational activities and ultimately facilitate comparison of clinical trial results. In this work we describe the adaptation of a proprietary method for isolation of a specific umbilical cord tissue-derived population of MSCs, herein designated by its registered trademark as UCX®, towards the production of an advanced therapy medicinal product (ATMP).
    • An episomally replicating vector binds to the nuclear matrix protein SAF-A in vivo.

      Jenke, Bok Hee C; Fetzer, Christian P; Stehle, Isa M; Jönsson, Franziska; Fackelmayer, Frank O; Conradt, Harald; Bode, Jürgen; Lipps, Hans J; Institute of Cell Biology, Stockumer Strasse 10, University of Witten/Herdecke, D-58448 Witten. (2002-04)
      pEPI-1, a vector in which a chromosomal scaffold/matrix-attached region (S/MAR) is linked to the simian virus 40 origin of replication, is propagated episomally in CHO cells in the absence of the virally encoded large T-antigen and is stably maintained in the absence of selection pressure. It has been suggested that mitotic stability is provided by a specific interaction of this vector with components of the nuclear matrix. We studied the interactions of pEPI-1 by crosslinking with cis-diamminedichloroplatinum II, after which it is found to copurify with the nuclear matrix. In a south-western analysis, the vector shows exclusive binding to hnRNP-U/SAF-A, a multifunctional scaffold/matrix specific factor. Immunoprecipitation of the crosslinked DNA-protein complex demonstrates that pEPI-1 is bound to this protein in vivo. These data provide the first experimental evidence for the binding of an artificial episome to a nuclear matrix protein in vivo and the basis for understanding the mitotic stability of this novel vector class.
    • Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience.

      Charbord, Pierre; Livne, Erella; Gross, Gerhard; Häupl, Thomas; Neves, Nuno M; Marie, Pierre; Bianco, Paolo; Jorgensen, Christian (2011-03)
      Genostem (acronym for "Adult mesenchymal stem cells engineering for connective tissue disorders. From the bench to the bed side") has been an European consortium of 30 teams working together on human bone marrow Mesenchymal Stem Cell (MSC) biological properties and repair capacity. Part of Genostem activity has been dedicated to the study of basic issues on undifferentiated MSCs properties and on signalling pathways leading to the differentiation into 3 of the connective tissue lineages, osteoblastic, chondrocytic and tenocytic. We have evidenced that native bone marrow MSCs and stromal cells, forming the niche of hematopoietic stem cells, were the same cellular entity located abluminally from marrow sinus endothelial cells. We have also shown that culture-amplified, clonogenic and highly-proliferative MSCs were bona fide stem cells, sharing with other stem cell types the major attributes of self-renewal and of multipotential priming to the lineages to which they can differentiate (osteoblasts, chondrocytes, adipocytes and vascular smooth muscle cells/pericytes). Extensive transcription profiling and in vitro and in vivo assays were applied to identify genes involved in differentiation. Thus we have described novel factors implicated in osteogenesis (FHL2, ITGA5, Fgf18), chondrogenesis (FOXO1A) and tenogenesis (Smad8). Another part of Genostem activity has been devoted to studies of the repair capacity of MSCs in animal models, a prerequisite for future clinical trials. We have developed novel scaffolds (chitosan, pharmacologically active microcarriers) useful for the repair of both bone and cartilage. Finally and most importantly, we have shown that locally implanted MSCs effectively repair bone, cartilage and tendon.
    • Structure of a novel farnesylated bilin from an insect--formation by α-cleavage of heme A of mitochondrial cytochrome c oxidases?

      Kayser, Hartmut; Wray, Victor; Nimtz, Manfred (2014-05)
      Biliproteins are present in almost all forms of life, and many of them play vital roles in photobiology. The bilin ligand of a recently characterized 500-kDa biliprotein from an insect has been isolated and its structure elucidated with chemical and spectroscopic techniques (UV-visible, IR, MS, NMR, and CD). This blue pigment, named CV-bilin, represents a unique high molecular mass derivative of biliverdin IXα, with an unusual 10E-configuration and a molecular mass of 852 Da, corresponding to C48H60N4O10. The high mass of this open-chain tetrapyrrole results from the presence of an epoxi-dihydroxyethylfarnesyl substituent at C-18 and a hydroxymethyl substituent at C-13. This substitution pattern exactly reflects that of heme A of mitochondrial cytochrome c oxidases with a hydroxyethylfarnesyl chain and a formyl group at corresponding positions of the cyclic tetrapyrrole. As no other natural product is known to show these structural features (heme O, the precursor of heme A, has a methyl group at C-13), this bilin is presumed to be derived from heme A by cleavage of the α-methine bridge and oxidative modifications at C-13 and the hydroxyethylfarnesyl chain. Possibly, a bilin structurally related to this insect bilin is also produced in other organisms as a result of mitochondrial turnover or degradation. As CV-bilin in complex with a specific protein is accumulated at the end of larval life, stored in the pupa, and finally transferred to the oocytes, a possible role of the free or protein-bound pigment in egg or embryonic development is discussed.
    • Latency can be conferred to a variety of cytokines by fusion with latency-associated peptide from TGF-β.

      Mullen, Lisa; Rigby, Anne; Sclanders, Michelle; Adams, Gill; Mittal, Gayatri; Colston, Julia; Fatah, Rewas; Subang, Cristina; Foster, Julie; Francis-West, Philippa; et al. (2014-01)
      Targeting cytokines to sites of disease has clear advantages because it increases their therapeutic index. We designed fusion proteins of the latent-associated peptide (LAP) derived from TGF-β with various cytokines via a matrix metalloproteinase (MMP) cleavage site. This design confers latency, increased half-life and targeting to sites of inflammation. The aim of this study is to determine whether this approach can be applied to cytokines of different molecular structures and sizes.
    • Bridging the species divide: transgenic mice humanized for type-I interferon response.

      Harari, Daniel; Abramovich, Renne; Zozulya, Alla; Smith, Paul; Pouly, Sandrine; Köster, Mario; Hauser, Hansjörg; Schreiber, Gideon (2014)
      We have generated transgenic mice that harbor humanized type I interferon receptors (IFNARs) enabling the study of type I human interferons (Hu-IFN-Is) in mice. These "HyBNAR" (Hybrid IFNAR) mice encode transgenic variants of IFNAR1 and IFNAR2 with the human extracellular domains being fused to transmembrane and cytoplasmic segments of mouse sequence. B16F1 mouse melanoma cells harboring the HyBNAR construct specifically bound Hu-IFN-Is and were rendered sensitive to Hu-IFN-I stimulated anti-proliferation, STAT1 activation and activation of a prototypical IFN-I response gene (MX2). HyBNAR mice were crossed with a transgenic strain expressing the luciferase reporter gene under the control of the IFN-responsive MX2 promoter (MX2-Luciferase). Both the HyBNAR and HyBNAR/MX2-Luciferase mice were responsive to all Hu-IFN-Is tested, inclusive of IFNα2A, IFNβ, and a human superagonist termed YNSα8. The mice displayed dose-dependent pharmacodynamic responses to Hu-IFN-I injection, as assessed by measuring the expression of IFN-responsive genes. Our studies also demonstrated a weak activation of endogenous mouse interferon response, especially after high dose administration of Hu-IFNs. In sharp contrast to data published for humans, our pharmacodynamic readouts demonstrate a very short-lived IFN-I response in mice, which is not enhanced by sub-cutaneous (SC) injections in comparison to other administration routes. With algometric differences between humans and mice taken into account, the HyBNAR mice provides a convenient non-primate pre-clinical model to advance the study of human IFN-Is.
    • Assessment of cellular reactions to magnesium as implant 
material in comparison to titanium and to glyconate using 
the mouse tail model.

      Reifenrath, Janin; Badar, Muhammad; Dziuba, Dina; Müller, Peter P; Heidenblut, Torsten; Bondarenko, Alexander; Meyer-Lindenberg, Andrea; Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover - Germany. (2013)
      Nowadays, research in magnesium alloys as a biodegradable implant material has increased. The aim of this study was to examine osteoinductive properties and tissue responses to pure magnesium in comparison to conventional permanent (titanium) and to degradable (glyconate) implant materials.
    • Stable expression of MutLγ in human cells reveals no specific response to mismatched DNA, but distinct recruitment to damage sites.

      Roesner, Lennart M; Mielke, Christian; Fähnrich, Silke; Merkhoffer, Yvonne; Dittmar, Kurt E J; Drexler, Hans G; Dirks, Wilhelm G; Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany. roesner.lennart@mh-hannover.de (2013-10)
      The human DNA mismatch repair (MMR) gene family comprises four MutL paralogues capable of forming heterodimeric MutLα (MLH1-PMS2), MutLβ (MLH1-PMS1), and MutLγ (MLH1-MLH3) protein complexes. Human MutL subunits PMS2 and MLH3 contain an evolutionarily conserved amino acid motif DQHA(X)2E(X)4E identified as an endonucleolytic domain capable of incising a defective DNA strand. PMS2 of MutLα is generally accepted to be the sole executor of endonucleolytic activity, but since MLH3 was shown to be able to perform DNA repair at low levels in vitro, our aim was to investigate whether or not MLH3 is activated as a backup under MutLα-deficient conditions. Here, we report stable expression of GFP-tagged MLH3 in the isogenic cell lines 293 and 293T which are functional or defective for MLH1 expression, respectively. As expected, MLH3 formed dimeric complexes with endogenous and recombinant MLH1. MutLγ dimers were recruited to sites of DNA damage induced by UVA micro-irradiation as shown for MutLα. Surprisingly, splicing variant MLH3Δ7 lacking the endonucleolytic motif displayed congruent foci formation, implying that recruitment is not necessarily representing active DNA repair. As an alternative test for repair enzyme activity, we combined alkylation-directed DNA damage with comet formation assays. While recombinant MutLα led to full recovery of DNA damage response in MMR deficient cells, expression of MutLγ or single MLH3 failed to do so. These experiments show recruitment and persistence of MutLγ-heterodimers at UVA-induced DNA lesions. However, we demonstrate that in a MutLα-deficient background no DNA repair-specific function carried out by MutLγ can be detected in living cells.
    • Therapeutic strategies for tendon healing based on novel biomaterials, factors and cells.

      Gross, Gerhard; Hoffmann, Andrea; Department of Molecular Biotechnology, Signalling and Gene Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2013)
      The repair of tendon injuries still presents a major clinical challenge to orthopedic medicine. Tendons, like some other tissues, are poorly vascularized and heal slowly. In addition, healing often leads to the formation of fibrous tissue and scar tissue which lack flexibility and biomechanical properties. So the treatment of tendon injuries is challenging. We give an overview of the structure and composition of tendons, pathological states of tendon and natural healing, as well as therapeutic options. We focus in particular on biomaterials that have been specifically developed or suggested for the successful repair of tendon injuries. In addition, we also review factor- and cell-dependent strategies to heal tendon and ligament disorders. Although brief, we hope that this review will be helpful, particularly for those readers who are new to the field of tendon tissue engineering.
    • Generation of mouse small intestinal epithelial cell lines that allow the analysis of specific innate immune functions.

      Schwerk, Johannes; Köster, Mario; Hauser, Hansjörg; Rohde, Manfred; Fulde, Marcus; Hornef, Mathias W; May, Tobias; Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2013)
      Cell lines derived from the small intestine that reflect authentic properties of the originating intestinal epithelium are of high value for studies on mucosal immunology and host microbial homeostasis. A novel immortalization procedure was applied to generate continuously proliferating cell lines from murine E19 embryonic small intestinal tissue. The obtained cell lines form a tight and polarized epithelial cell layer, display characteristic tight junction, microvilli and surface protein expression and generate increasing transepithelial electrical resistance during in vitro culture. Significant up-regulation of Cxcl2 and Cxcl5 chemokine expression upon exposure to defined microbial innate immune stimuli and endogenous cytokines is observed. Cell lines were also generated from a transgenic interferon reporter (Mx2-Luciferase) mouse, allowing reporter technology-based quantification of the cellular response to type I and III interferon. Thus, the newly created cell lines mimic properties of the natural epithelium and can be used for diverse studies including testing of the absorption of drug candidates. The reproducibility of the method to create such cell lines from wild type and transgenic mice provides a new tool to study molecular and cellular processes of the epithelial barrier.
    • The formation of an organic coat and the release of corrosion microparticles from metallic magnesium implants.

      Badar, Muhammad; Lünsdorf, Heinrich; Evertz, Florian; Rahim, Muhammad Imran; Glasmacher, Birgit; Hauser, Hansjörg; Mueller, Peter P; Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. (2013-07)
      Magnesium alloys have been proposed as prospective degradable implant materials. To elucidate the complex interactions between the corroding implants and the tissue, magnesium implants were analyzed in a mouse model and the response was compared to that induced by Ti and by the resorbable polymer polyglactin, respectively. One month after implantation, distinct traces of corrosion were apparent but the magnesium implants were still intact, whereas resorbable polymeric wound suture implants were already fragmented. Analysis of magnesium implants 2weeks after implantation by energy-dispersive X-ray spectroscopy indicated that magnesium, oxygen, calcium and phosphate were present at the implant surface. One month after implantation, the element composition of the outermost layer of the implant was indicative of tissue without detectable levels of magnesium, indicating a protective barrier function of this organic layer. In agreement with this notion, gene expression patterns in the surrounding tissue were highly similar for all implant materials investigated. However, high-resolution imaging using energy-filtered transmission electron microscopy revealed magnesium-containing microparticles in the tissue in the proximity of the implant. The release of such corrosion particles may contribute to the accumulation of calcium phosphate in the nearby tissue and to bone conductive activities of magnesium implants.
    • Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels.

      Schniedermann, Judith; Rennecke, Moritz; Buttler, Kerstin; Richter, Georg; Städtler, Anna-Maria; Norgall, Susanne; Badar, Muhammad; Barleon, Bernhard; May, Tobias; Wilting, Jörg; et al. (2010)
      Postnatal endothelial progenitor cells (EPCs) have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated.