Now showing items 1-20 of 3240

    • Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: Considerations for scientists and funding agencies.

      Bartenschlager, Ralf; Baumert, Thomas F; Bukh, Jens; Houghton, Michael; Lemon, Stanley M; Lindenbach, Brett D; Lohmann, Volker; Moradpour, Darius; Pietschmann, Thomas; Rice, Charles M; et al. (Elsevier, 2018-03-02)
      The development and clinical implementation of direct-acting antivirals (DAAs) has revolutionized the treatment of chronic hepatitis C. Infection with any hepatitis C virus (HCV) genotype can now be eliminated in more than 95% of patients with short courses of all-oral, well-tolerated drugs, even in those with advanced liver disease and liver transplant recipients. DAAs have proven so successful that some now consider HCV amenable to eradication, and continued research on the virus of little remaining medical relevance. However, given 400,000 HCV-related deaths annually important challenges remain, including identifying those who are infected, providing access to treatment and reducing its costs. Moreover, HCV infection rarely induces sterilizing immunity, and those who have been cured with DAAs remain at risk for reinfection. Thus, it is very unlikely that global eradication and elimination of the cancer risk associated with HCV infection can be achieved without a vaccine, yet research in that direction receives little attention. Further, over the past two decades HCV research has spearheaded numerous fundamental discoveries in the fields of molecular and cell biology, immunology and microbiology. It will continue to do so, given the unique opportunities afforded by the reagents and knowledge base that have been generated in the development and clinical application of DAAs. Considering these critical challenges and new opportunities, we conclude that funding for HCV research must be sustained.
    • A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs.

      Maxwell, Colin S; Jacobsen, Thomas; Marshall, Ryan; Noireaux, Vincent; Beisel, Chase L; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Elsevier, 2018-02-24)
      The RNA-guided nucleases derived from the CRISPR-Cas systems in bacteria and archaea have found numerous applications in biotechnology, including genome editing, imaging, and gene regulation. However, the discovery of novel Cas nucleases has outpaced their characterization and subsequent exploitation. A key step in characterizing Cas nucleases is determining which protospacer-adjacent motif (PAM) sequences they recognize. Here, we report advances to an in vitro method based on an E. coli cell-free transcription-translation system (TXTL) to rapidly elucidate PAMs recognized by Cas nucleases. The method obviates the need for cloning Cas nucleases or gRNAs, does not require the purification of protein or RNA, and can be performed in less than a day. To advance our previously published method, we incorporated an internal GFP cleavage control to assess the extent of library cleavage as well as Sanger sequencing of the cleaved library to assess PAM depletion prior to next-generation sequencing. We also detail the methods needed to construct all relevant DNA constructs, and how to troubleshoot the assay. We finally demonstrate the technique by determining PAM sequences recognized by the Neisseria meningitidis Cas9, revealing subtle sequence requirements of this highly specific PAM. The overall method offers a rapid means to identify PAMs recognized by diverse CRISPR nucleases, with the potential to greatly accelerate our ability to characterize and harness novel CRISPR nucleases across their many uses.
    • Polysaccharide Submicrocarrier for Improved Pulmonary Delivery of Poorly Soluble Anti-infective Ciprofloxacin: Preparation, Characterization, and Influence of Size on Cellular Uptake.

      Ho, Duy-Khiet; Costa, Ana; de Rossi, Chiara; de Souza Carvalho-Wodarz, Cristiane; Loretz, Brigitta; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Chemical Society, 2018-02-21)
      The majority of the currently used and developed anti-infectives are poorly water-soluble molecules. The poor solubility might lead to limited bioavailability and pharmacological action of the drug. Novel pharmaceutical materials have thus been designed to solve those problems and improve drug delivery. In this study, we propose a facile method to produce submicrocarriers (sMCs) by electrostatic gelation of anionic ß-cyclodextrin (aß-CD) and chitosan. The average hydrodynamic size ranged from 400 to 900 nm by carefully adjusting polymer concentrations and N/C ratio. The distinct host-guest reaction of cyclodextrin derivative is considered as a good approach to enhance solubility, and prevent drug recrystallization, and thus was used to develop sMC to improve the controlled release profile of a poorly soluble and clinically relevant anti-infective ciprofloxacin. The optimal molar ratio of ciprofloxacin to aß-CD was found to be 1:1, which helped maximize encapsulation efficiency (∼90%) and loading capacity (∼9%) of ciprofloxacin loaded sMCs. Furthermore, to recommend the future application of the developed sMCs, the dependence of cell uptake on sMCs size (500, 700, and 900 nm) was investigated in vitro on dTHP-1 by both flow cytometry and confocal microscopy. The results demonstrate that, regardless of their size, an only comparatively small fraction of the sMCs were taken up by the macrophage-like cells, while most of the carriers were merely adsorbed to the cell surface after 2 h incubation. After continuing the incubation to reach 24 h, the majority of the sMCs were found intracellularly. However, the sMCs had been designed to release sufficient amount of drug within 24 h, and the subsequent phagocytosis of the carrier may be considered as an efficient pathway for its safe degradation and elimination. In summary, the developed sMC is a suitable system with promising perspectives recommended for pulmonary extracellular infection therapeutics.
    • Respiratory Influenza A Virus Infection Triggers Local and Systemic Natural Killer Cell Activation Toll-Like Receptor 7.

      Stegemann-Koniszewski, Sabine; Behrens, Sarah; Boehme, Julia D; Hochnadel, Inga; Riese, Peggy; Guzmán, Carlos A; Kröger, Andrea; Schreiber, Jens; Gunzer, Matthias; Bruder, Dunja; et al. (Frontiers, 2018-02-13)
      The innate immune system senses influenza A virus (IAV) through different pathogen-recognition receptors including Toll-like receptor 7 (TLR7). Downstream of viral recognition natural killer (NK) cells are activated as part of the anti-IAV immune response. Despite the known decisive role of TLR7 for NK cell activation by therapeutic immunostimulatory RNAs, the contribution of TLR7 to the NK cell response following IAV infection has not been addressed. We have analyzed lung cytokine responses as well as the activation, interferon (IFN)-γ production, and cytotoxicity of lung and splenic NK cells following sublethal respiratory IAV infection in wild-type and TLR7ko mice. Early airway IFN-γ levels as well as the induction of lung NK cell CD69 expression and IFN-γ production in response to IAV infection were significantly attenuated in TLR7-deficient hosts. Strikingly, respiratory IAV infection also primed splenic NK cells for IFN-γ production, degranulation, and target cell lysis, all of which were fully dependent on TLR7. At the same time, lung type I IFN levels were significantly reduced in TLR7ko mice early following IAV infection, displaying a potential upstream mechanism of the attenuated NK cell activation observed. Taken together, our data clearly demonstrate a specific role for TLR7 signaling in local and systemic NK cell activation following respiratory IAV infection despite the presence of redundant innate IAV-recognition pathways.
    • Worlds Apart - Transcriptome Profiles of Key Oral Microbes in the Periodontal Pocket Compared to Single Laboratory Culture Reflect Synergistic Interactions.

      Deng, Zhi-Luo; Sztajer, Helena; Jarek, Michael; Bhuju, Sabin; Wagner-Döbler, Irene; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2018-02-06)
      Periodontitis is a worldwide prevalent oral disease which results from dysbiosis of the periodontal microbiome. Some of the most active microbial players, e.g., Porphyromonas gingivalis, Treponema denticola, and Fusobacterium nucleatum, have extensively been studied in the laboratory, but it is unclear to which extend these findings can be transferred to in vivo conditions. Here we show that the transcriptional profiles of P. gingivalis, T. denticola, and F. nucleatum in the periodontal niche are distinct from those in single laboratory culture and exhibit functional similarities. GO (gene ontology) term enrichment analysis showed up-regulation of transporters, pathogenicity related traits and hemin/heme uptake mechanisms for all three species in vivo. Differential gene expression analysis revealed that cysteine proteases, transporters and hemin/heme-binding proteins were highly up-regulated in the periodontal niche, while genes involved in DNA modification were down-regulated. The data suggest strong interactions between those three species regarding protein degradation, iron up-take, and mobility in vivo, explaining their enhanced synergistic pathogenicity. We discovered a strikingly high frequency of Single Nucleotide Polymorphisms (SNPs) in vivo. For F. nucleatum we discovered a total of 127,729 SNPs in periodontal niche transcripts, which were found in similar frequency in health and disease and covered the entire genome, suggesting continuous evolution in the host. We conclude that metabolic interactions shape gene expression in vivo. Great caution is required when inferring pathogenicity of microbes from laboratory data, and microdiversity is an important adaptive trait of natural communities.
    • PD-1/PD-L1 pathway inhibition to restore effector functions in exhausted CD8+ T cells: chances, limitations and potential risks

      Veluswamy, Priya; Bruder, Dunja; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (AME Publishing Company, 2018-04)
      T cell exhaustion is a well-known mechanism involved in escape of degenerated cells or certain pathogens from CD8+ T cell-mediated immune surveillance, ultimately resulting in tumor development and chronic infections, respectively. Next to activated T cells, exhausted CD8+ T cells typically express high levels of the programmed cell death-1 (PD-1) receptor. While interaction of PD-1 with its ligand programmed death-ligand 1 (PD-L1) on hemotopoietic and non-hemotopoietic cells is important for the re-establishment of homeostasis following immune activation, PD-1/PD-L1 interaction represents a major drawback in certain other disease settings such as cancer or chronic viral infections. Here PD-1 signalling in T cells prevents efficient anti-tumor or anti-viral immune responses. Thus, therapeutic interference with the PD-1/PD-L1 pathway represents a promising approach for releasing exhausted CD8+ T cells from PD-1-dependent suppression and reactivation of effector functions. However, recent reports have highlighted unexpected outcomes of PD-1/PD-L1 pathway inhibition in the context of chronic infections. We provide here a comprehensive overview of the recent discoveries made in the context of PD-1/PD-L1 checkpoint inhibition that are considered relevant with respect to the targeted reactivation of effector functions in exhausted CD8+ T cells. We briefly discuss the impact of PD-1 signalling on the expression of certain transcription factors, on epigenetic modifications affecting chromatin accessibility, on cellular metabolism and the expression of certain cytokine receptors involved in immune homeostasis. These newly uncovered facts should be carefully considered before further development of therapies targeting the PD-1/PD-L1 pathway that are aiming at the restoration of pathogen-specific and anti-tumor CD8+ T cell effector functions in order to prevent adverse side effects. © 2018, Translational Cancer Research.
    • Structure of heme d-free cd nitrite reductase NirS.

      Klünemann, Thomas; Blankenfeldt, Wulf; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (International Union of Crystallography, 2020-05-29)
      A key step in anaerobic nitrate respiration is the reduction of nitrite to nitric oxide, which is catalysed by the cd1 nitrite reductase NirS in, for example, the Gram-negative opportunistic pathogen Pseudomonas aeruginosa. Each subunit of this homodimeric enzyme consists of a cytochrome c domain and an eight-bladed β-propeller that binds the uncommon isobacteriochlorin heme d1 as an essential part of its active site. Although NirS has been well studied mechanistically and structurally, the focus of previous studies has been on the active heme d1-bound form. The heme d1-free form of NirS reported here, which represents a premature state of the reductase, adopts an open conformation with the cytochrome c domains moved away from each other with respect to the active enzyme. Further, the movement of a loop around Trp498 seems to be related to a widening of the propeller, allowing easier access to the heme d1-binding side. Finally, a possible link between the open conformation of NirS and flagella formation in P. aeruginosa is discussed.
    • Polyketide-Derived Secondary Metabolites from a Dothideomycetes Fungus, . et . ., (Muyocopronales) with Antimicrobial and Cytotoxic Activities.

      Mapook, Ausana; Macabeo, Allan Patrick G; Thongbai, Benjarong; Hyde, Kevin D; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-04-08)
      Pseudopalawania siamensisgen. et sp. nov., from northern Thailand, is introduced based on multi-gene analyses and morphological comparison. An isolate was fermented in yeast malt culture broth and explored for its secondary metabolite production. Chromatographic purification of the crude ethyl acetate (broth) extract yielded four tetrahydroxanthones comprised of a new heterodimeric bistetrahydroxanthone, pseudopalawanone (1), two known dimeric derivatives, 4,4'-secalonic acid D (2) and penicillixanthone A (3), the corresponding monomeric tetrahydroxanthone paecilin B (4), and the known benzophenone, cephalanone F (5). Compounds 1-3 showed potent inhibitory activity against Gram-positive bacteria. Compounds 2 and 3 were inhibitory against Bacillus subtilis with minimum inhibitory concentrations (MIC) of 1.0 and 4.2 μg/mL, respectively. Only compound 2 showed activity against Mycobacterium smegmatis. In addition, the dimeric compounds 1-3 also showed moderate cytotoxic effects on HeLa and mouse fibroblast cell lines, which makes them less attractive as candidates for development of selectively acting antibiotics.
    • 2-Hydroxysorangiadenosine: Structure and Biosynthesis of a Myxobacterial Sesquiterpene-Nucleoside.

      Okoth, Dorothy A; Hug, Joachim J; Garcia, Ronald; Spröer, Cathrin; Overmann, Jörg; Müller, Rolf; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (MDPI, 2020-06-09)
      Myxobacteria represent an under-investigated source for biologically active natural products featuring intriguing structural moieties with potential applications, e.g., in the pharmaceutical industry. Sorangiadenosine and the here-discovered 2-hydroxysorangiadenosine are myxobacterial sesquiterpene-nucleosides with an unusual structural moiety, a bicyclic eudesmane-type sesquiterpene. As the biosynthesis of these rare terpene-nucleoside hybrid natural products remains elusive, we investigated secondary metabolomes and genomes of several 2-hydroxysorangiadenosine-producing myxobacteria. We report the isolation and full structure elucidation of 2-hydroxysorangiadenosine and its cytotoxic and antibiotic activities and propose a biosynthetic pathway in the myxobacterium Vitiosangium cumulatum MCy10943T.
    • New Peptaibiotics and a Cyclodepsipeptide from : Isolation, Identification, Cytotoxic and Nematicidal Activities.

      Moussa, Ashaimaa Y; Lambert, Christopher; Stradal, Theresia E B; Ashrafi, Samad; Maier, Wolfgang; Stadler, Marc; Helaly, Soleiman E; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-03-22)
      Fungal associations with nematodes have attracted scientific attention because of the need to develop new biocontrol agents. In this context, Ijuhya vitellina, an antagonistic fungus previously isolated from the plant parasitic cyst nematode Heterodera filipjevi, was selected to carry out an in-depth metabolomic study for its active metabolites. Herein, three new nonapeptide peptaibols with leucinostatin based sequences were isolated and identified by 1, 2D NMR, and HR-ESI-MS-MS. The absolute configuration was assigned based on Marfay's analysis and Mosher ester formation. The new leucinostatins manifested moderate nematicidal effect against the plant pathogenic nematode Pratylenchus penetrans with LD90 values ranging from 5 to 7 µg/mL. Furthermore, a cyclodepsipeptide, named arthrichitin D, with five amino acid residues attached to a 3-hydroxy-2,4-dimethylhexadeca-4,6-dienoic fatty acid chain was discovered and showed weak nematicidal effect against Caenorhabditis elegans. Chaetoglobosin B and its 19-O-acetyl derivative were also obtained as minor metabolites, and the activity of chaetoglobosin B on the actin cytoskeleton of mammalian cells was assessed.
    • The crystal structure of the heme d biosynthesis-associated small c-type cytochrome NirC reveals mixed oligomeric states in crystallo.

      Klünemann, Thomas; Henke, Steffi; Blankenfeldt, Wulf; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (: International Union of Crystallography, 2020-03-25)
      Monoheme c-type cytochromes are important electron transporters in all domains of life. They possess a common fold hallmarked by three α-helices that surround a covalently attached heme. An intriguing feature of many monoheme c-type cytochromes is their capacity to form oligomers by exchanging at least one of their α-helices, which is often referred to as 3D domain swapping. Here, the crystal structure of NirC, a c-type cytochrome co-encoded with other proteins involved in nitrite reduction by the opportunistic pathogen Pseudomonas aeruginosa, has been determined. The crystals diffracted anisotropically to a maximum resolution of 2.12 Å (spherical resolution of 2.83 Å) and initial phases were obtained by Fe-SAD phasing, revealing the presence of 11 NirC chains in the asymmetric unit. Surprisingly, these protomers arrange into one monomer and two different types of 3D domain-swapped dimers, one of which shows pronounced asymmetry. While the simultaneous observation of monomers and dimers probably reflects the interplay between the high protein concentration required for crystallization and the structural plasticity of monoheme c-type cytochromes, the identification of conserved structural motifs in the monomer together with a comparison with similar proteins may offer new leads to unravel the unknown function of NirC.
    • Foreword - Contents - List of authors

      Schwartz, Wilhelm; Kula, M.-R. (1977)
      FOREWORD It is a long way from theoretical considerations and laboratory experiments to technical applications, especially with the economic uncertainties lurking in the background. Since the publication in 1964 by Silverman and Ehrlich, containing a survey of what had until then been tried in microbiological formation and degradation of minerals by thiobacilli and other microorganisms, technical applications of thiobacilli have been developed on a broad scale only for sulphidic copper ores and for uranium ores along the lines of the primary program for low-grade ores, heap leaching and in-situ leaching of exhausted mines. During the last 10 years, new topics of leaching research have been discussed or are already developing: batch leaching with suspensions of ore concentrates; combined methods of chemical and microbial, and of electrolytic and microbial leaching; experiments to separate heavy-metal mixtures by microbial methods; leaching at high temperatures within the biological range or at high hydrostatic pressures; uranium leaching of phosphorites; leaching of industrial wastes and residues; application of acid-producing microorganisms other than thiobacilli; problems of freshwater shortage and its circumvention by the use of brackish water or sea water and adapted Thiobacillus strains; synergistic effects of thiobacilli and other microorganisms during the leaching process; treatment of mining waste waters with thiobacilli; relations between metal precipitation and solubilisation in the formation of sedimentary ore beds and in leaching processes. A quite different approach to leaching processes is the use of complexing or chelating metabolites produced by heterotrophic microorganisms. This had already been tried successfully by Perkins and Novielli (1962) with manganese oxides; it is again being discussed on a broader basis. Most of these topics were discussed or at least mentioned at our Conference, but some were not yet touched upon. As far as the technical and economic situation, the discussions on waste problems, environmental contamination, and shortages of raw materials are concerned, we may assume that biotechnical leaching has not yet reached its high point, but will continue to be extended and developed. | hope that the Conference will stimulate interest in this field of biotechnical research and also discussions between microbiologists and engineers of the mining and metallurgical industries on problems where interdisciplinary contacts may be profitable to both sides. | acknowledge with pleasure the support of this Conference by Dr. M.-R. Kula, Scientific Director of the GBF. | am especially grateful to the authors, and to Dr. Walsdorff of the GBF for their cooperation in preparing this volume. Braunschweig, July 1977 W. Schwartz Research and development at the GBF (Institute for Biotechnological Research Ltd.) is centered on the apparently unlimited biosynthetic capabilities of living cells: microorganisms as well as cell cultures. This potential is exploited for the production of organic chemicals, pharmaceuticals and materials such as single cell protein and specific enzymes. This also involves engineering, scale-up and development of new methods. Through the Leaching Conference, held here on 23-26 March 1977, the GBF has for the first time supported a scientific discipline that, although belonging to Biotechnology, is at present not being worked on at this Institute. However, the scientists at the GBF are aware that in recent years the leaching of low-grade ores has made fast progress in some areas. Thus we welcomed Prof. Schwartz’s suggestion to invite specialists in this field to a conference, in order to obtain a comprehensive and up-to-date survey of the field and to learn of problems and progress. We thank the participants of this Conference for their successful effort. It was decided to publish the papers of the Conference in the GBF Monograph Series, since, according to experts on modern leaching, there exists neither a comprehensive book nor a symposium volume that reflects the state of the art. This was clearly a correct decision, judging by the numerous requests already received. The present volume not only makes available a collection of the complete papers to the participants of the Conference, but is also intended to let other research groups in industry and academia gain insight into the area of microbial leaching, and to stimulate work in this field, especially in our country, where efforts are made to intensify work in this direction. Braunschweig-Stöckheim, July 1977 M.-R. Kula
    • LAUGUNG VON KUPFERKARBONAT-UND KUPFERSILIKAT-ERZEN MIT HETEROTROPHEN MIKROORGANISMEN

      Kiel, Hildegard; Institut für Mikrobiologie der T.U. Braunschweig Arbeitsgruppe Prof.Dr.W,.Schwartz (1977)
      Leaching of carbonate and silicate ores with Thiobacilli under laboratory conditions has not been very successful. We have tested the leaching effects of organic acids and of acid producing heterotrophic microorganisms upon a low-grade copper ore, containing carbonates and silicates, from Timna, Israel. Good results were obtained with citric, lactic, glycollic, and tartaric acids. Citric acid, 0.05 M, for instance, solubilized 82% Cu. By lowering the pH with sulphuric acid to pH 2, lactic, eitric, and glycollic acids yielded almost 100% Cu. Citric acid producing strains of Aspergillus niger, growing in surface cultures on a Ssucrose fermentation medium, leached more than 80% Cu. Sulphite liquor may be used with fair results as a fermentation medium for A. niger. Anaerobic leaching experiments with whey, containing homofermentative lactobacilli, yielded 83% Cu.
    • SOME ASPECTS OF THE MECHANISMS OF SOLUBILIZATION AND INSOLUBILIZATION OF URANIUM FROM GRANITES BY HETEROTROPHIC MICROORGANISMS

      Berthelin, J.; Belgy, G.; Magne, R.; Centre de Pédologie biologique du C.N.R.S. B.P. 5 - 54500 Vandoeuvre-les-Nancy, France (*)now R. MAGNE is prospecting engineer at the C.E.A. (1977)
      In batch cultures, complex microflora from granitic mountain mass, promoted solubilization of U in presence of amino-acids as sole source of carbon and energy. Solubilized U amounted up to 100 mg U/1 in presence of microorganisms but was less than 35 mg U/1 in absence of microorganisms (sterile controls). Microflora involved contained different strains of bacteria, Pseudomonas fluorescens, P. putida, Achromobacter, Bacterium, Gaffkya or Peptococcus. In experimental design of factorial type with semi-continuous flow devices, the activity of different microflora from known forest soil was compared. Microflora specifically withstanding partial sterilization and comprising different Pseudomonas Bacillus licheniformis, B. cereus, B. lentus, B. polymyxa, B. megaterium, plus one or two unidentified yeasts promoted significantly microbial solubilization of U by synthesis of complexing agents with high complexing capacity for Al and Fe, but lower complexing capacity for U. But anaerobic microflora induced by waterlogging was much less active as compared by solubilization with control microflora. From the comparison of the different strains involved, Pseudomonas appeared to be the most active. In presence of an "organo-urany1" solution, obtained by adding glutamic or aspartic acids to uranium ore in sterile conditions, different bacteria originating from samples of granitic mountains mass could grow : Achromobacter, Brevibacterium, Acinetobacter, Gaffkya or Peptococcus, Pseudomonas, showing that such microorganisms could contribute to U deposition by metabolising organo-uranium compounds. Leaching and ecological implications of such processes are discussed.
    • CHEMICAL AND MICROBIALLY-ASSISTED LEACHING OF ATHABASCA OIL SANDS COKE

      Zajic, J. E.; Jack, T. R.; Sullivan, E. A.; Faculty of Engineering Science The University of Western Ontario London, Ontario Canada (1977)
      The vast deposits of oil sands in the Province of Alberta Canada bear significant quantities of vanadium, nickel, titanium and iron in the bitumen component. During the production of oil from this bitumen, the metals are concentrated in the coke and coke ash refinery by-products. This study is concerned with the removal of metals, particularly vanadium, from the coke and coke ash obtained from different coking processes. The feasibility of marketable metal recovery by both chemical and microbially assisted leaching techniques has been assessed. Further the environmental impact of the solid waste disposal of untreated coke and coke ash has been evaluated by investigating the mechanism and extent of metal leaching under natural conditions and by investigating the toxicity of these "natural" leachates in a novel bioassay system. The study presents the data obtained in a critical evaluation of the leaching of metals from coke and coke ash in both economic and ecological contexts.
    • METAL EXTRACTION FROM INDUSTRIAL WASTE WITH THIOBACILLI

      Ebner, H. G.; Universitat Dortmund, Technische Chemie B, Dortmund, FRG (1977)
      During the last two decades a lot of research has been carried out on microbiological leaching of low-grade ores. Since the UNCTAD conferences on raw materials have shown that besides the energy resources also the metallic resources of the world are limeted and what is even worse not renewable the idea of recycling has become more and more attractive. This means that waste raterials will have to be processed to regain valuable metals. Bacterial leaching of inorganic industrial waste or tailings can be regarded at least under two beneficial aspects: 1. toxic substances from the wastes will be removee thus the cost for their disposal can be lowered and the environment will be protected, 2. valuable metals can be gained from the wastes. This part is probably even more economic because of the rising prices for raw-materials in the near future.
    • UTILIZATION OF METAL BEARING INDUSTRIAL WASTE MATERIALS BY MICROBIOLOGICAL LEACHING

      Szolnoki, J.; Hungarian Academy of Sciences, Laboratory for Geochemical Research, Budapest, Hungary (1977)
      Chemoautotrophic sulphur-bacteria were isolated from mine drainage waters /Th. ferrooxidans/, which are able to oxidize the ferrous-iron into ferric-iron in biocatalytic way in a heavy acidic medium. These bacteria were adapted to high metal especially to high iron, aluminium and sodium concentrations. The ferric-sulphate produced by the bacterial oxidation is a strong leaching agent. The optimal parameters were determined under which the acidic ferric-sulphate bearing solution is favourable from the point of view of practical utilization. During the biological oxidation process a part of dissolved iron precipitated in form of ferric-hydroxide which is also utilizable material.
    • LEACHING OF MANGANESE ORES USING ARTHROBACTER SPECIES

      Agate, A. D.; Deshpande, H. A.; Microbiology Department, Abasaheb Garware College Poona, INDIA (1977)
      When low grade manganiferous material (-65 mesh) obtained from Andhra Pradesh and Goa, India was subjected to leaching experiments , an efficiency of 70 to 85 % resulted,using an Arthrobacter species. The inoculum could be best cultivated in enriched soil extract - manganese medium and percolating columns with filtration were used for a period of 14 days. The optimum conditions for maximum leaching were worked out and the operation was found to be economically feasible on a large scale, when the adsorbed manganese was quantitatively precipitated with lime, Under the same conditions, other heterotrophic bacteria belonging to the genera Bacillus and Pseudomonas, isolated from fresh water pipeline deposits alongwith the predominant Arthrobacter species tested above, took upto 90 days to carry out the leaching of manganese,
    • EXPERIMENTS ON COMBINED ELECTRO AND BACTERIAL LEACHING (Short Communication)

      Tepper, K. P.; Näveke, R.; Lehrstuhl für Mikrobiologie, Technische Universitat Braunschweig Braunschweig, FRG (1977)
      The influence of direct current and of current with changing the poles two times per sec at intensities of 0,2...15 mA and at tensions of 12...170 Von leaching of pyrite dispersed in quartzite in percolators with Thiobacillus ferrooxidans was studied. The solution of iron was accelerated by bacteria without current and by current without bacteria, but in combination the acceleration did not exceed the sum of both single effects. The results suggest that there is no direct elec- trophysiological influence of current on bacteria under conditions of our experiments. At present we try to utilize indirect electrochemical effects of current on bacterial leaching of chalcopyrite.
    • ELECTRO-LEACHING OF CHALCOPYRITE

      Illi, H.; Bertram, R.; Institut flir Physikalische Chemie, Technische Universitdt Braunschweig, Braunschweig, FRG (1977)
      Samples of naturally occurring chalcopyrite were dissolved anodically under potentiostatic conditions in various electrolytes. Limiting currents through the supply of holes were not observed. Because of the high current densities, even with a slight overpotential one observes a considerable resistance polarization depending on the conductivity of the electrolyte. A comparison with the results obtained through the leaching in the absence of current shows that the dissolution of the ore is strongly activated through the application of an external potential.