Now showing items 1-20 of 3013

    • Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters.

      Ahmed, Yousra; Rebets, Yuriy; Estévez, Marta Rodríguez; Zapp, Josef; Myronovskyi, Maksym; Luzhetskyy, Andriy; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (BioMed Central (BMC), 2020-01-09)
      BACKGROUND: Heterologous expression of secondary metabolite gene clusters is used to achieve increased production of desired compounds, activate cryptic gene clusters, manipulate clusters from genetically unamenable strains, obtain natural products from uncultivable species, create new unnatural pathways, etc. Several Streptomyces species are genetically engineered for use as hosts for heterologous expression of gene clusters. S. lividans TK24 is one of the most studied and genetically tractable actinobacteria, which remain untapped. It was therefore important to generate S. lividans chassis strains with clean metabolic backgrounds. RESULTS: In this study, we generated a set of S. lividans chassis strains by deleting endogenous gene clusters and introducing additional φC31 attB loci for site-specific integration of foreign DNA. In addition to the simplified metabolic background, the engineered S. lividans strains had better growth characteristics than the parental strain in liquid production medium. The utility of the developed strains was validated by expressing four secondary metabolite gene clusters responsible for the production of different classes of natural products. Engineered strains were found to be superior to the parental strain in production of heterologous natural products. Furthermore, S. lividans-based strains were better producers of amino acid-based natural products than other tested common hosts. Expression of a Streptomyces albus subsp. chlorinus NRRL B-24108 genomic library in the modified S. lividans ΔYA9 and S. albus Del14 strains resulted in the production of 7 potentially new compounds, only one of which was produced in both strains. CONCLUSION: The constructed S. lividans-based strains are a great complement to the panel of heterologous hosts for actinobacterial secondary metabolite gene expression. The expansion of the number of such engineered strains will contribute to an increased success rate in isolation of new natural products originating from the expression of genomic and metagenomic libraries, thus raising the chance to obtain novel biologically active compounds.
    • Correlation between immunoglobulin dose administered and plasma neutralization of streptococcal superantigens in patients with necrotizing soft tissue infections.

      Bergsten, Helena; Madsen, Martin Bruun; Bergey, Francois; Hyldegaard, Ole; Skrede, Steinar; Arnell, Per; Oppegaard, Oddvar; Itzek, Andreas; Perner, Anders; Svensson, Mattias; et al. (Oxford University Press, 2020-01-09)
      Analyses of plasma collected pre- and post-administration of intravenous immunoglobulin G (IVIG) from patients with Group A Streptococcus necrotizing soft tissue infections demonstrated a negative correlation between IVIG dose and toxin-triggered T-cell proliferation (r=-0.67, p<0.0001). One 25g-dose IVIG was sufficient to yield patient plasma neutralizing activity against streptococcal superantigens.
    • Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling.

      Hollenhorst, Monika I; Jurastow, Innokentij; Nandigama, Rajender; Appenzeller, Silke; Li, Lei; Vogel, Jörg; Wiederhold, Stephanie; Althaus, Mike; Empting, Martin; Altmüller, Janine; et al. (Wiley, 2020-01-01)
      For protection from inhaled pathogens many strategies have evolved in the airways such as mucociliary clearance and cough. We have previously shown that protective respiratory reflexes to locally released bacterial bitter "taste" substances are most probably initiated by tracheal brush cells (BC). Our single-cell RNA-seq analysis of murine BC revealed high expression levels of cholinergic and bitter taste signaling transcripts (Tas2r108, Gnat3, Trpm5). We directly demonstrate the secretion of acetylcholine (ACh) from BC upon stimulation with the Tas2R agonist denatonium. Inhibition of the taste transduction cascade abolished the increase in [Ca2+]i in BC and subsequent ACh-release. ACh-release is regulated in an autocrine manner. While the muscarinic ACh-receptors M3R and M1R are activating, M2R is inhibitory. Paracrine effects of ACh released in response to denatonium included increased [Ca2+]i in ciliated cells. Stimulation by denatonium or with Pseudomonas quinolone signaling molecules led to an increase in mucociliary clearance in explanted tracheae that was Trpm5- and M3R-mediated. We show that ACh-release from BC via the bitter taste cascade leads to immediate paracrine protective responses that can be boosted in an autocrine manner. This mechanism represents the initial step for the activation of innate immune responses against pathogens in the airways.
    • Phosphatidylcholine PC ae C44:6 in cerebrospinal fluid is a sensitive biomarker for bacterial meningitis.

      de Araujo, Leonardo Silva; Pessler, Kevin; Sühs, Kurt-Wolfram; Novoselova, Natalia; Klawonn, Frank; Kuhn, Maike; Kaever, Volkhard; Müller-Vahl, Kirsten; Trebst, Corinna; Skripuletz, Thomas; et al. (BioMed Central (BMC), 2020-01-07)
      BACKGROUND: The timely diagnosis of bacterial meningitis is of utmost importance due to the need to institute antibiotic treatment as early as possible. Moreover, the differentiation from other causes of meningitis/encephalitis is critical because of differences in management such as the need for antiviral or immunosuppressive treatments. Considering our previously reported association between free membrane phospholipids in cerebrospinal fluid (CSF) and CNS involvement in neuroinfections we evaluated phosphatidylcholine PC ae C44:6, an integral constituent of cell membranes, as diagnostic biomarker for bacterial meningitis. METHODS: We used tandem mass spectrometry to measure concentrations of PC ae C44:6 in cell-free CSF samples (n = 221) from patients with acute bacterial meningitis, neuroborreliosis, viral meningitis/encephalitis (herpes simplex virus, varicella zoster virus, enteroviruses), autoimmune neuroinflammation (anti-NMDA-receptor autoimmune encephalitis, multiple sclerosis), facial nerve and segmental herpes zoster (shingles), and noninflammatory CNS disorders (Bell's palsy, Tourette syndrome, normal pressure hydrocephalus). RESULTS: PC ae C44:6 concentrations were significantly higher in bacterial meningitis than in all other diagnostic groups, and were higher in patients with a classic bacterial meningitis pathogen (e.g. Streptococcus pneumoniae, Neisseria meningitidis, Staphylococcus aureus) than in those with less virulent or opportunistic pathogens as causative agents (P = 0.026). PC ae C44:6 concentrations were only moderately associated with CSF cell count (Spearman's ρ = 0.45; P = 0.009), indicating that they do not merely reflect neuroinflammation. In receiver operating characteristic curve analysis, PC ae C44:6 equaled CSF cell count in the ability to distinguish bacterial meningitis from viral meningitis/encephalitis and autoimmune CNS disorders (AUC 0.93 both), but had higher sensitivity (91% vs. 41%) and negative predictive value (98% vs. 89%). A diagnostic algorithm comprising cell count, lactate and PC ae C44:6 had a sensitivity of 97% (specificity 87%) and negative predictive value of 99% (positive predictive value 61%) and correctly diagnosed three of four bacterial meningitis samples that were misclassified by cell count and lactate due to low values not suggestive of bacterial meningitis. CONCLUSIONS: Increased CSF PC ae C44:6 concentrations in bacterial meningitis likely reflect ongoing CNS cell membrane stress or damage and have potential as additional, sensitive biomarker to diagnose bacterial meningitis in patients with less pronounced neuroinflammation.
    • Pigmentosins from Gibellula sp. As antibiofilm agents and a new glycosylated asperfuran from Cordyceps javanica

      Helaly, Soleiman E.; Kuephadungphan, Wilawan; Phainuphong, Patima; Ibrahim, Mahmoud A.A.; Tasanathai, Kanoksri; Mongkolsamrit, Suchada; Luangsa-Ard, Janet Jennifer; Phongpaichit, Souwalak; Rukachaisirikul, Vatcharin; Stadler, Marc; et al. (Beilstein Institut, 2019-12-16)
      n the course of our exploration of the Thai invertebrate-pathogenic fungi for biologically active metabolites, pigmentosin A (1) and a new bis(naphtho-α-pyrone) derivative, pigmentosin B (2), were isolated from the spider-associated fungus Gibellula sp. Furthermore, a new glycosylated asperfuran 3, together with one new (6) and two known (4 and 5) cyclodepsipeptides, was isolated from Cordyceps javanica. The pigmentosins 1 and 2 showed to be active against biofilm formation of Staphylococcus aureus DSM1104. The lack of toxicity toward the studied microorganism and cell lines of pigmentosin B (2), as well as the antimicrobial effect of pigmentosin A (1), made them good candidates for further development for use in combination therapy of infections involving biofilm-forming S. aureus. The structure elucidation and determination of the absolute configuration were accomplished using a combination of spectroscopy, including 1D and 2D NMR, HRMS, Mosher ester analysis, and comparison of calculated/experimental ECD spectra. A chemotaxonomic investigation of the secondary metabolite profiles using analytical HPLC coupled with diode array detection and mass spectrometry (HPLC–DAD–MS) revealed that the production of pigmentosin B (2) was apparently specific for Gibellula sp., while the glycoasperfuran 3 was specific for C. javanica.
    • CAMITAX: Taxon labels for microbial genomes.

      Bremges, Andreas; Fritz, Adrian; McHardy, Alice C; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany. (Oxford Academic, 2020-01-01)
      BACKGROUND: The number of microbial genome sequences is increasing exponentially, especially thanks to recent advances in recovering complete or near-complete genomes from metagenomes and single cells. Assigning reliable taxon labels to genomes is key and often a prerequisite for downstream analyses. FINDINGS: We introduce CAMITAX, a scalable and reproducible workflow for the taxonomic labelling of microbial genomes recovered from isolates, single cells, and metagenomes. CAMITAX combines genome distance-, 16S ribosomal RNA gene-, and gene homology-based taxonomic assignments with phylogenetic placement. It uses Nextflow to orchestrate reference databases and software containers and thus combines ease of installation and use with computational reproducibility. We evaluated the method on several hundred metagenome-assembled genomes with high-quality taxonomic annotations from the TARA Oceans project, and we show that the ensemble classification method in CAMITAX improved on all individual methods across tested ranks. CONCLUSIONS: While we initially developed CAMITAX to aid the Critical Assessment of Metagenome Interpretation (CAMI) initiative, it evolved into a comprehensive software package to reliably assign taxon labels to microbial genomes. CAMITAX is available under Apache License 2.0 at
    • An RNA Surprise in Bacterial Effector Mechanisms

      Gerovac, Milan; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Elsevier BV, 2019-12)
      acterial pathogens secrete effector proteins to manipulate host signaling proteins and cellular structures. In this issue of Cell Host & Microbe, Pagliuso et al. (2019) propose an effector mechanism in Listeria monocytogenes whereby an RNA-binding protein associates with bacterial RNA that stimulates RIG-I (retinoic acid inducible gene I)-based innate immunity in the host cytosol.
    • Robust hepatitis E virus infection and transcriptional response in human hepatocytes.

      Todt, Daniel; Friesland, Martina; Moeller, Nora; Praditya, Dimas; Kinast, Volker; Brüggemann, Yannick; Knegendorf, Leonard; Burkard, Thomas; Steinmann, Joerg; Burm, Rani; et al. (National Academy of Sciences, 2020-01-02)
      Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and the leading cause for acute viral hepatitis worldwide. The virus is classified as a member of the genus Orthohepevirus A within the Hepeviridae family. Due to the absence of a robust cell culture model for HEV infection, the analysis of the viral life cycle, the development of effective antivirals and a vaccine is severely limited. In this study, we established a protocol based on the HEV genotype 3 p6 (Kernow C-1) and the human hepatoma cell lines HepG2 and HepG2/C3A with different media conditions to produce intracellular HEV cell culture-derived particles (HEVcc) with viral titers between 105 and 106 FFU/mL. Viral titers could be further enhanced by an HEV variant harboring a mutation in the RNA-dependent RNA polymerase. These HEVcc particles were characterized in density gradients and allowed the trans-complementation of subgenomic reporter HEV replicons. In addition, in vitro produced intracellular-derived particles were infectious in liver-humanized mice with high RNA copy numbers detectable in serum and feces. Efficient infection of primary human and swine hepatocytes using the developed protocol could be observed and was inhibited by ribavirin. Finally, RNA sequencing studies of HEV-infected primary human hepatocytes demonstrated a temporally structured transcriptional defense response. In conclusion, this robust cell culture model of HEV infection provides a powerful tool for studying viral-host interactions that should facilitate the discovery of antiviral drugs for this important zoonotic pathogen.
    • A Soluble Version of Nipah Virus Glycoprotein G Delivered by Vaccinia Virus MVA Activates Specific CD8 and CD4 T Cells in Mice.

      Kalodimou, Georgia; Veit, Svenja; Jany, Sylvia; Kalinke, Ulrich; Broder, Christopher C; Sutter, Gerd; Volz, Asisa; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (MDPI, 2019-12-24)
      Nipah virus (NiV) is an emerging zoonotic virus that is transmitted by bats to humans and to pigs, causing severe respiratory disease and often fatal encephalitis. Antibodies directed against the NiV-glycoprotein (G) protein are known to play a major role in clearing NiV infection and in providing vaccine-induced protective immunity. More recently, T cells have been also shown to be involved in recovery from NiV infection. So far, relatively little is known about the role of T cell responses and the antigenic targets of NiV-G that are recognized by CD8 T cells. In this study, NiV-G protein served as the target immunogen to activate NiV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for the generation of MVA-NiV-G candidate vaccines expressing different versions of recombinant NiV-G. Overlapping peptides covering the entire NiV-G protein were used to identify major histocompatibility complex class I/II-restricted T cell responses in type I interferon receptor-deficient (IFNAR-/-) mice after vaccination with the MVA-NiV-G candidate vaccines. We have identified an H2-b-restricted nonamer peptide epitope with CD8 T cell antigenicity and a H2-b 15mer with CD4 T cell antigenicity in the NiV-G protein. The identification of this epitope and the availability of the MVA-NiV-G candidate vaccines will help to evaluate NiV-G-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of NiV-G infection. Of note, a soluble version of NiV-G was advantageous in activating NiV-G-specific cellular immune responses using these peptides
    • The conserved 3' UTR-derived small RNA NarS mediates mRNA crossregulation during nitrate respiration.

      Wang, Chuan; Chao, Yanjie; Matera, Gianluca; Gao, Qian; Vogel, Jörg; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Oxford Academic, 2019-12-21)
      Small noncoding RNAs (sRNAs) from mRNA 3' UTRs seem to present a previously unrecognized layer of bacterial post-transcriptional control whereby mRNAs influence each other's expression, independently of transcriptional control. Studies in Escherichia coli and Salmonella enterica showed that such sRNAs are natural products of RNase E-mediated mRNA decay and associate with major RNA-binding proteins (RBPs) such as Hfq and ProQ. If so, there must be additional sRNAs from mRNAs that accumulate only under specific physiological conditions. We test this prediction by characterizing candidate NarS that represents the 3' UTR of nitrate transporter NarK whose gene is silent during standard aerobic growth. We find that NarS acts by Hfq-dependent base pairing to repress the synthesis of the nitrite transporter, NirC, resulting in mRNA cross-regulation of nitrate and nitrite transporter genes. Interestingly, the NarS-mediated repression selectively targets the nirC cistron of the long nirBDC-cysG operon, an observation that we rationalize as a mechanism to protect the bacterial cytoplasm from excessive nitrite toxicity during anaerobic respiration with abundant nitrate. Our successful functional assignment of a 3' UTR sRNA from a non-standard growth condition supports the notion that mRNA crossregulation is more pervasive than currently appreciated.
    • Identification of Ppar-modulated miRNA hubs that target the fibrotic tumor microenvironment.

      Winkler, Ivana; Bitter, Catrin; Winkler, Sebastian; Weichenhan, Dieter; Thavamani, Abhishek; Hengstler, Jan G; Borkham-Kamphorst, Erawan; Kohlbacher, Oliver; Plass, Christoph; Geffers, Robert; et al. (National Academy of Sciences, 2020-01-07)
      Liver fibrosis interferes with normal liver function and facilitates hepatocellular carcinoma (HCC) development, representing a major threat to human health. Here, we present a comprehensive perspective of microRNA (miRNA) function on targeting the fibrotic microenvironment. Starting from a murine HCC model, we identify a miRNA network composed of 8 miRNA hubs and 54 target genes. We show that let-7, miR-30, miR-29c, miR-335, and miR-338 (collectively termed antifibrotic microRNAs [AF-miRNAs]) down-regulate key structural, signaling, and remodeling components of the extracellular matrix. During fibrogenic transition, these miRNAs are transcriptionally regulated by the transcription factor Pparγ and thus we identify a role of Pparγ as regulator of a functionally related class of AF-miRNAs. The miRNA network is active in human HCC, breast, and lung carcinomas, as well as in 2 independent mouse liver fibrosis models. Therefore, we identify a miRNA:mRNA network that contributes to formation of fibrosis in tumorous and nontumorous organs of mice and humans.
    • The stem cell-specific long noncoding RNA HOXA10-AS in the pathogenesis of KMT2A-rearranged leukemia.

      Al-Kershi, Sina; Bhayadia, Raj; Ng, Michelle; Verboon, Lonneke; Emmrich, Stephan; Gack, Lucie; Schwarzer, Adrian; Strowig, Till; Heckl, Dirk; Klusmann, Jan-Henning; et al. (American Society of Haematology, 2019-12-23)
      HOX genes are highly conserved, and their precisely controlled expression is crucial for normal hematopoiesis. Accordingly, deregulation of HOX genes can cause leukemia. However, despite of intensive research on the coding HOX genes, the role of the numerous long noncoding RNAs (lncRNAs) within the HOX clusters during hematopoiesis and their contribution to leukemogenesis are incompletely understood. Here, we show that the lncRNA HOXA10-AS, located antisense to HOXA10 and mir-196b in the HOXA cluster, is highly expressed in hematopoietic stem cells (HSCs) as well as in KMT2A-rearranged and NPM1 mutated acute myeloid leukemias (AMLs). Using short hairpin RNA- and locked nucleic acid-conjugated chimeric antisense oligonucleotide (LNA-GapmeR)-mediated HOXA10-AS-knockdown and CRISPR/Cas9-mediated excision in vitro, we demonstrate that HOXA10-AS acts as an oncogene in KMT2A-rearranged AML. Moreover, HOXA10-AS knockdown severely impairs the leukemic growth of KMT2A-rearranged patient-derived xenografts in vivo, while high HOXA10-AS expression can serve as a marker of poor prognosis in AML patients. Lentiviral expression of HOXA10-AS blocks normal monocytic differentiation of human CD34+ hematopoietic stem and progenitor cells. Mechanistically, we show that HOXA10-AS localizes in the cytoplasm and acts in trans to induce NF-κB target genes. In total, our data imply that the normally HSC-specific HOXA10-AS is an oncogenic lncRNA in KMT2A-r AML. Thus, it may also represent a potential therapeutic target in KMT2A-rearranged AML.
    • Insights into the Cnx1E catalyzed MPT-AMP hydrolysis.

      Hercher, Thomas W; Krausze, Joern; Hoffmeister, Sven; Zwerschke, Dagmar; Lindel, Thomas; Blankenfeldt, Wulf; Mendel, Ralf R; Kruse, Tobias; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Portland Press, 2020-01-31)
      Molybdenum insertases (Mo-insertases) catalyze the final step of molybdenum cofactor (Moco) biosynthesis, an evolutionary old and highly conserved multi-step pathway. In the first step of the pathway, GTP serves as substrate for the formation of cyclic pyranopterin monophosphate, which is subsequently converted into molybdopterin (MPT) in the second pathway step. In the following synthesis steps, MPT is adenylated yielding MPT-AMP that is subsequently used as substrate for enzyme catalyzed molybdate insertion. Molybdate insertion and MPT-AMP hydrolysis are catalyzed by the Mo-insertase E-domain. Earlier work reported a highly conserved aspartate residue to be essential for Mo-insertase functionality. In this work, we confirmed the mechanistic relevance of this residue for the Arabidopsis thaliana Mo-insertase Cnx1E. We found that the conservative substitution of Cnx1E residue Asp274 by Glu (D274E) leads to an arrest of MPT-AMP hydrolysis and hence to the accumulation of MPT-AMP. We further showed that the MPT-AMP accumulation goes in hand with the accumulation of molybdate. By crystallization and structure determination of the Cnx1E variant D274E, we identified the potential reason for the missing hydrolysis activity in the disorder of the region spanning amino acids 269 to 274. We reasoned that this is caused by the inability of a glutamate in position 274 to coordinate the octahedral Mg2+-water complex in the Cnx1E active site.
    • The NF-κB transcription factor c-Rel controls host defense against Citrobacter rodentium.

      Luu, Maik; Romero, Rossana; Bazant, Jasmin; Abass, Elfadil; Hartmann, Sabrina; Leister, Hanna; Fischer, Florence; Mahdavi, Rouzbeh; Plaza-Sirvent, Carlos; Schmitz, Ingo; et al. (Wiley-VCH, 2019-11-14)
      Mice lacking CD4+ T cells or B cells are highly susceptible to Citrobacter rodentium infection. In this study, we show that the activity of the transcription factor c-Rel in lymphocytes is crucial for clearance of C. rodentium. Mice deficient for c-Rel fail to generate protective antibodies and to eradicate the pathogen.
    • Antiviral potential of human IFN-α subtypes against influenza A H3N2 infection in human lung explants reveals subtype-specific activities.

      Matos, Aline da Rocha; Wunderlich, Katharina; Schloer, Sebastian; Schughart, Klaus; Geffers, Robert; Seders, Martine; Witt, Marlous de; Christersson, Anmari; Wiewrodt, Rainer; Wiebe, Karsten; et al. (Taylor & Francis Open, 2019-01-01)
      Influenza is an acute respiratory infection causing high morbidity and mortality in annual outbreaks worldwide. Antiviral drugs are limited and pose the risk of resistance development, calling for new treatment options. IFN-α subtypes are immune-stimulatory cytokines with strong antiviral activities against IAV in vitro and in vivo. However, the clinical use of IFN-α2, the only licensed subtype of this multi-gene family, could not prevent or limit IAV infections in humans. However, the other subtypes were not investigated.Therefore, this study evaluated the induction and antiviral potential of all human IFN-α subtypes during H3N2 IAV infection in human lung explants. We found that subtypes with weak antiviral activities were preferentially induced during IAV infection in human lungs. Intriguingly, non-induced subtypes α16, α5 and α4 suppressed viral replication up to 230-fold more efficiently than α2. Furthermore, our results demonstrate that subtypes with stronger antiviral activities induce higher expression of IAV-specific restriction factors and that MxA expression is a determinant of the subtype-specific antiviral activity towards H3N2 IAV. These results corroborate that IFN-α subtypes exhibit differential antiviral activities and emphasize that subtypes α16, α5 and α4 should be further investigated for the prevention and treatment of severe infections with seasonal H3N2 IAV.
    • Safety profile of rubella vaccine administered to pregnant women: A systematic review of pregnancy related adverse events following immunisation, including congenital rubella syndrome and congenital rubella infection in the foetus or infant.

      Mangtani, Punam; Evans, Stephen J W; Lange, Berit; Oberle, Doris; Smith, Julianna; Drechsel-Baeuerle, Ursula; Keller-Stanislawski, Brigitte; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2019-12-12)
      Background: Data on the safety of inadvertent rubella vaccination in pregnancy is important for rubella vaccination programs aimed at preventing congenital rubella syndrome. Methods: The association between monovalent rubella or combination vaccinations in or shortly before pregnancy and potential harm to the foetus was examined by conducting a systematic review and meta-analysis using fixed effect methods and simulation. Results: Four cohort studies of inadvertently vaccinated and unvaccinated women were found, 15 cohorts of pregnant women who were rubella susceptible at time of inadvertent vaccination and 9 cohort studies with no information on susceptibility and case series. No case of vaccine associated congenital rubella syndrome (CRS) was identified. Cohort studies with an unvaccinated comparison group were limited in number and size, and based on these only a theoretical additional risk of 6 or more cases of CRS per 1000 vaccinated women (0% observed, upper 95% CI 0.6%) could be excluded. Based on cohorts of vaccinated rubella susceptible pregnant women a maximum theoretical risk of 1 CRS case in 1008 vaccinated women (0% observed, upper 95% CI 0.099%) was estimated. Asymptomatic rubella vaccine virus infection of the neonate was also noted (fixed effects estimate of risk overall 1.74%, 95% CI 1.21, 2.28). Conclusion: There is no evidence that CRS is caused by rubella-containing vaccines but transplacental vaccine virus infection can occur. CRS is effectively prevented by vaccination, thus the risk/benefit balance is unequivocally in favour of vaccination. The data confirm previous recommendations that inadvertent vaccination during pregnancy is not an indication for termination of pregnancy.
    • Chemical synthesis of tripeptide thioesters for the biotechnological incorporation into the myxobacterial secondary metabolite argyrin via mutasynthesis.

      Siebert, David C B; Sommer, Roman; Pogorevc, Domen; Hoffmann, Michael; Wenzel, Silke C; Müller, Rolf; Titz, Alexander; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany. (Beilstein Institut, 2019-01-01)
      The argyrins are secondary metabolites from myxobacteria with antibiotic activity against Pseudomonas aeruginosa. Studying their structure-activity relationship is hampered by the complexity of the chemical total synthesis. Mutasynthesis is a promising approach where simpler and fully synthetic intermediates of the natural product's biosynthesis can be biotechnologically incorporated. Here, we report the synthesis of a series of tripeptide thioesters as mutasynthons containing the native sequence with a dehydroalanine (Dha) Michael acceptor attached to a sarcosine (Sar) and derivatives. Chemical synthesis of the native sequence ᴅ-Ala-Dha-Sar thioester required revision of the sequential peptide synthesis into a convergent strategy where the thioester with sarcosine was formed before coupling to the Dha-containing dipeptide.
    • The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3 Regulatory T Cells.

      Andersen, Liisa; Gülich, Alexandra Franziska; Alteneder, Marlis; Preglej, Teresa; Orola, Maria Jonah; Dhele, Narendra; Stolz, Valentina; Schebesta, Alexandra; Hamminger, Patricia; Hladik, Anastasiya; et al. (Elsevier/ Cel Press, 2019-12-24)
      Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of Treg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient Treg cells show only minor transcriptional changes ex vivo, indicating that MAZR is not essential for establishing the transcriptional program of peripheral Treg cells. Finally, the loss of MAZR reduces the clinical score in dextran-sodium sulfate (DSS)-induced colitis, suggesting that MAZR activity in T cells controls the extent of intestinal inflammation. Together, these data indicate that MAZR is part of a Treg cell-intrinsic transcriptional network that modulates Treg cell development.
    • Importance of superoxide dismutase A and M for protection of Staphylococcus aureus in the oxidative stressful environment of cystic fibrosis airways.

      Treffon, Janina; Chaves-Moreno, Diego; Niemann, Silke; Pieper, Dietmar Helmut; Vogl, Thomas; Roth, Johannes; Kahl, Barbara C; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley, 2020-01-02)
      Staphylococcus aureus is one of the earliest pathogens that persists the airways of cystic fibrosis (CF) patients and contributes to increased inflammation and decreased lung function. In contrast to other staphylococci, S. aureus possesses two superoxide dismutases (SODs), SodA and SodM, with SodM being unique to S. aureus. Both SODs arm S. aureus for its fight against oxidative stress, a byproduct of inflammatory reactions. Despite complex investigations it is still unclear, if both enzymes are crucial for the special pathogenicity of S. aureus. To investigate the role of both SODs during staphylococcal persistence in CF airways, we analyzed survival and gene expression of S. aureus CF isolates and laboratory strains in different CF-related in vitro and ex vivo settings. Bacteria located in inflammatory and oxidized CF sputum transcribed high levels of sodA and sodM. Especially expression values of sodM were remarkably higher in CF sputum than in bacterial in vitro cultures. Interestingly, also S. aureus located in airway epithelial cells expressed elevated transcript numbers of both SODs, indicating that S. aureus is exposed to oxidative stress at various sites within CF airways. Both enzymes promoted survival of S. aureus during PMN killing and seem to act compensatory, thereby giving evidence that the interwoven interaction of SodA and SodM contributes to S. aureus virulence and facilitates S. aureus persistence within CF airways.
    • Search for hits and early leads from soil bacteria to combat infectious diseases.

      Herrmann, Jennifer; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Open Learning on Enteric Pathogens, 2018-02-22)