Now showing items 21-40 of 3992

    • Dysregulated Immunometabolism Is Associated with the Generation of Myeloid-Derived Suppressor Cells in Staphylococcus aureus Chronic Infection.

      Dietrich, Oliver; Heinz, Alexander; Goldmann, Oliver; Geffers, Robert; Beineke, Andreas; Hiller, Karsten; Saliba, Antoine-Emmanuel; Medina, Eva; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Karger, 2021-11-11)
      Myeloid-derived suppressor cells (MDSCs) are a compendium of immature myeloid cells that exhibit potent T-cell suppressive capacity and expand during pathological conditions such as cancer and chronic infections. Although well-characterized in cancer, the physiology of MDSCs in the infection setting remains enigmatic. Here, we integrated single-cell RNA sequencing (scRNA-seq) and functional metabolic profiling to gain deeper insights into the factors governing the generation and maintenance of MDSCs in chronic Staphylococcus aureus infection. We found that MDSCs originate not only in the bone marrow but also at extramedullary sites in S. aureus-infected mice. scRNA-seq showed that infection-driven MDSCs encompass a spectrum of myeloid precursors in different stages of differentiation, ranging from promyelocytes to mature neutrophils. Furthermore, the scRNA-seq analysis has also uncovered valuable phenotypic markers to distinguish mature myeloid cells from immature MDSCs. Metabolic profiling indicates that MDSCs exhibit high glycolytic activity and high glucose consumption rates, which are required for undergoing terminal maturation. However, rapid glucose consumption by MDSCs added to infection-induced perturbations in the glucose supplies in infected mice hinders the terminal maturation of MDSCs and promotes their accumulation in an immature stage. In a proof-of-concept in vivo experiment, we demonstrate the beneficial effect of increasing glucose availability in promoting MDSC terminal differentiation in infected mice. Our results provide valuable information of how metabolic alterations induced by infection influence reprogramming and differentiation of MDSCs.
    • Bioinformatics of virus taxonomy: foundations and tools for developing sequence-based hierarchical classification.

      Gorbalenya, Alexander E; Lauber, Chris; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Elsevier, 2021-12-06)
      The genome sequence is the only characteristic readily obtainable for all known viruses, underlying the growing role of comparative genomics in organizing knowledge about viruses in a systematic evolution-aware way, known as virus taxonomy. Overseen by the International Committee on Taxonomy of Viruses (ICTV), development of virus taxonomy involves taxa demarcation at 15 ranks of a hierarchical classification, often in host-specific manner. Outside the ICTV remit, researchers assess fitting numerous unclassified viruses into the established taxa. They employ different metrics of virus clustering, basing on conserved domain(s), separation of viruses in rooted phylogenetic trees and pair-wise distance space. Computational approaches differ further in respect to methodology, number of ranks considered, sensitivity to uneven virus sampling, and visualization of results. Advancing and using computational tools will be critical for improving taxa demarcation across the virosphere and resolving rank origins in research that may also inform experimental virology. Copyrigh
    • Understanding the interaction between cytomegalovirus and tuberculosis in children: The way forward.

      Olbrich, Laura; Stockdale, Lisa; Basu Roy, Robindra; Song, Rinn; Cicin-Sain, Luka; Whittaker, Elizabeth; Prendergast, Andrew J; Fletcher, Helen; Seddon, James A; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (PLOS, 2021-12-09)
      Over 1 million children develop tuberculosis (TB) each year, with a quarter dying. Multiple factors impact the risk of a child being exposed to Mycobacterium tuberculosis (Mtb), the risk of progressing to TB disease, and the risk of dying. However, an emerging body of evidence suggests that coinfection with cytomegalovirus (CMV), a ubiquitous herpes virus, impacts the host response to Mtb, potentially influencing the probability of disease progression, type of TB disease, performance of TB diagnostics, and disease outcome. It is also likely that infection with Mtb impacts CMV pathogenesis. Our current understanding of the burden of these 2 diseases in children, their immunological interactions, and the clinical consequence of coinfection is incomplete. It is also unclear how potential interventions might affect disease progression and outcome for TB or CMV. This article reviews the epidemiological, clinical, and immunological literature on CMV and TB in children and explores how the 2 pathogens interact, while also considering the impact of HIV on this relationship. It outlines areas of research uncertainty and makes practical suggestions as to potential studies that might address these gaps. Current research is hampered by inconsistent definitions, study designs, and laboratory practices, and more consistency and collaboration between researchers would lead to greater clarity. The ambitious targets outlined in the World Health Organization End TB Strategy will only be met through a better understanding of all aspects of child TB, including the substantial impact of coinfections.
    • High SARS-CoV-2 seroprevalence in children and adults in the Austrian ski resort of Ischgl.

      Knabl, Ludwig; Mitra, Tanmay; Kimpel, Janine; Rössler, Annika; Volland, André; Walser, Andreas; Ulmer, Hanno; Pipperger, Lisa; Binder, Sebastian C; Riepler, Lydia; et al. (NPG, 2021-06-30)
      Between April 21st and 27th 2020, a cross-sectional epidemiologic study targeting the full population of Ischgl (n = 1867), of which 79% could be included (n = 1473, incl. 214 children), was performed. For each individual, the study involved a SARS-CoV-2 PCR, antibody testing and structured questionnaires. A mathematical model was used to help understand the influence of the determined seroprevalence on virus transmission.
    • The Hologenome of Haliclona fulva (Porifera, Demospongiae) Reveals an Abundant and Diverse Viral Community

      García-Bonilla, Erika; Chaves-Moreno, Diego; Riaño-Pachón, Diego; Terán, Wilson; Acosta, Alberto; Junca, Howard; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers Media, 2021-11-02)
      Viruses are among the most abundant biological entities in the ocean, largely responsible of modulating nutrients fluxes and influencing microbial composition and functioning. In marine invertebrate holobionts like sponges and their associated microbiomes, little is known about virome composition. Here, we characterized the Haliclona fulva hologenome, an encrusting low-microbial abundance sponge found across the Western Mediterranean Sea (35–40 m of depth) producer of a large metabolic repertoire of bioactive compounds and harboring a distinct and stable associated microbiome. Assembled contigs from shotgun metagenome sequences obtained from H. fulva specimens were comprehensively analyzed regarding taxonomic and functional content revealing its remarkable and abundant viral community dominated by single-stranded DNA (ssDNA) virus. Viral families consistently detected in contigs are Circoviridae, Phycodnaviridae, Poxviridae, Herelleviridae, Mimiviridae, Microviridae, and notably the first reported encounter of Nanoviridae and Genomoviridae in Porifera, expanding their known host range. The relative abundance of inferred bacteriophages/prophages was low, suggesting that the prokaryotic community in this sponge has a limited host range and susceptibility. H. fulva showed a distinct viral composition supporting the general proposition of specific and coevolving viromes in marine holobionts.
    • Carbapenem-Resistant spp. as an Emerging Concern in the Hospital-Setting: Results From a Genome-Based Regional Surveillance Study.

      Yao, Yancheng; Falgenhauer, Linda; Falgenhauer, Jane; Hauri, Anja M; Heinmüller, Petra; Domann, Eugen; Chakraborty, Trinad; Imirzalioglu, Can; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2021-11-11)
      The rise of Carbapenem-resistant Enterobacterales (CRE) represents an increasing threat to patient safety and healthcare systems worldwide. Citrobacter spp., long considered not to be a classical nosocomial pathogen, in contrast to Klebsiella pneumoniae and Escherichia coli, is fast gaining importance as a clinical multidrug-resistant pathogen. We analyzed the genomes of 512 isolates of 21 CRE species obtained from 61 hospitals within a three-year-period and found that Citrobacter spp. (C. freundii, C. portucalensis, C. europaeus, C. koseri and C. braakii) were increasingly detected (n=56) within the study period. The carbapenemase-groups detected in Citrobacter spp. were KPC, OXA-48/-like and MBL (VIM, NDM) accounting for 42%, 31% and 27% respectively, which is comparable to those of K. pneumoniae in the same study. They accounted for 10%, 17% and 14% of all carbapenemase-producing CRE detected in 2017, 2018 and 2019, respectively. The carbapenemase genes were almost exclusively located on plasmids. The high genomic diversity of C. freundii is represented by 22 ST-types. KPC-2 was the predominantly detected carbapenemase (n=19) and was located in 95% of cases on a highly-conserved multiple-drug-resistance-gene-carrying pMLST15 IncN plasmid. KPC-3 was rarely detected and was confined to a clonal outbreak of C. freundii ST18. OXA-48 carbapenemases were located on plasmids of the IncL/M (pOXA-48) type. About 50% of VIM-1 was located on different IncN plasmids (pMLST7, pMLST5). These results underline the increasing importance of the Citrobacter species as emerging carriers of carbapenemases and therefore as potential disseminators of Carbapenem- and multidrug-resistance in the hospital setting.
    • IRF7 and RNH1 are modifying factors of HIV-1 reservoirs: a genome-wide association analysis.

      Zhang, Zhenhua; Trypsteen, Wim; Blaauw, Marc; Chu, Xiaojing; Rutsaert, Sofie; Vandekerckhove, Linos; van der Heijden, Wouter; Dos Santos, Jéssica Cristina; Xu, Cheng-Jian; Swertz, Morris A; et al. (BMC, 2021-11-16)
      The analysis resulted in one significant association with CA HIV-1 DNA (rs2613996, P < 5 × 10-8) and two suggestive associations with RNA:DNA ratio (rs7113204 and rs7817589, P < 5 × 10-7). Then, we prioritized PTDSS2, IRF7, RNH1, and DEAF1 as potential HIV-1 reservoir modifiers and validated that higher expressions of IRF7 and RNH1 were accompanied by rs7113204-G. Moreover, RNA:DNA ratio, indicating relative HIV-1 transcription activity, was lower in PLHIV carrying this variant.
    • Two New Triterpenes from Basidiomata of the Medicinal and Edible Mushroom laetiporus sulphureus .

      Hassan, Khadija; Matio Kemkuignou, Blondelle; Stadler, Marc; HZI, Helmholtz Zentrum für Infektionsforschung, GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (MDPI, 2021-11-24)
      In the search for novel anti-infectives from natural sources, fungi, in particular basidiomycetes, have proven to still harbor so much potential in terms of secondary metabolites diversity. There have been numerous reports on isolating numerous secondary metabolites from genus Laetiporus. This study reports on two new triterpenoids, laetiporins C and D, and four known triterpenes from the fruiting body of L. sulphureus. The structures of the isolated compounds were elucidated based on their 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data in combination with high-resolution electrospray mass spectrometric (HR-ESIMS) data. Laetiporin C exhibited weak antifungal activity against Mucor hiemalis. Furthermore, the compounds showed weak antiproliferative activity against the mouse fibroblast L929 and human cancer cell lines, including KB-3-1, A431, MCF-7, PC-3 and A549.
    • New Kendomycin Derivative Isolated from sp. Cl 58-27.

      Paulus, Constanze; Gromyko, Oleksandr; Luzhetskyy, Andriy; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (MDPI, 2021-11-12)
      In the course of screening new streptomycete strains, the strain Streptomyces sp. Cl 58-27 caught our attention due to its interesting secondary metabolite production profile. Here, we report the isolation and characterization of an ansamycin natural product that belongs structurally to the already known kendomycins. The structure of the new kendomycin E was elucidated using NMR spectroscopy, and the corresponding biosynthetic gene cluster was identified by sequencing the genome of Streptomyces sp. Cl 58-27 and conducting a detailed analysis of secondary metabolism gene clusters using bioinformatic tools.
    • Exploring the permeation of fluoroquinolone metalloantibiotics across outer membrane porins by combining molecular dynamics simulations and a porin-mimetic in vitro model.

      Sousa, Carla F; Coimbra, João T S; Richter, Robert; Morais-Cabral, João H; Ramos, Maria J; Lehr, Claus-Michael; Fernandes, Pedro A; Gameiro, Paula; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2021-12-08)
      The misuse and overuse of fluoroquinolones in recent years have triggered alarming levels of resistance to these antibiotics. Porin channels are crucial for the permeation of fluoroquinolones across the outer membrane of Gram-negative bacteria and modifications in porin expression are an important mechanism of bacterial resistance. One possible strategy to overcome this problem is the development of ternary copper complexes with fluoroquinolones. Compared to fluoroquinolones, these metalloantibiotics present a larger partition to the lipid bilayer and a more favorable permeation, by passive diffusion, across bacteriomimetic phospholipid-based model membranes. To rule out the porin-dependent pathway for the metalloantibiotics, we explored the permeation through OmpF (one of the most abundant porins present in the outer membrane of Gram-negative bacteria) using a multi-component approach. X-ray studies of OmpF porin crystals soaked with a ciprofloxacin ternary copper complex did not show a well-defined binding site for the compound. Molecular dynamics simulations showed that the translocation of the metalloantibiotic through this porin is less favorable than that of free fluoroquinolone, as it presented a much larger free energy barrier to cross the narrow constriction region of the pore. Lastly, permeability studies of different fluoroquinolones and their respective copper complexes using a porin-mimetic in vitro model corroborated the lower rate of permeation for the metalloantibiotics relative to the free antibiotics. Our results support a porin-independent mechanism for the influx of the metalloantibiotics into the bacterial cell. This finding brings additional support to the potential application of these metalloantibiotics in the fight against resistant infections and as an alternative to fluoroquinolones.
    • The ambivalent role of Bacteroides in enteric infections.

      Bornet, Elise; Westermann, Alexander J; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Elsevier (Cell Press), 2021-12-07)
      Bacteroides spp. are increasingly used as model gut commensals in cocolonization studies with enteropathogens. The collective findings imply common themes of colonization resistance but also pathogen crossfeeding. We discuss how cutting-edge transcriptomics may help to disentangle the molecular basis of the divergent roles of Bacteroides in either protecting against or promoting infection.
    • Nitric oxide controls proliferation of Leishmania major by inhibiting the recruitment of permissive host cells.

      Formaglio, Pauline; Alabdullah, Mohamad; Siokis, Anastasios; Handschuh, Juliane; Sauerland, Ina; Fu, Yan; Krone, Anna; Gintschel, Patricia; Stettin, Juliane; Heyde, Sandrina; et al. (Cell Press, 2021-10-15)
      Nitric oxide (NO) is an important antimicrobial effector but also prevents unnecessary tissue damage by shutting down the recruitment of monocyte-derived phagocytes. Intracellular pathogens such as Leishmania major can hijack these cells as a niche for replication. Thus, NO might exert containment by restricting the availability of the cellular niche required for efficient pathogen proliferation. However, such indirect modes of action remain to be established. By combining mathematical modeling with intravital 2-photon biosensors of pathogen viability and proliferation, we show that low L. major proliferation results not from direct NO impact on the pathogen but from reduced availability of proliferation-permissive host cells. Although inhibiting NO production increases recruitment of these cells, and thus pathogen proliferation, blocking cell recruitment uncouples the NO effect from pathogen proliferation. Therefore, NO fulfills two distinct functions for L. major containment: permitting direct killing and restricting the supply of proliferation-permissive host cells.
    • PerfuPul-A Versatile Perfusable Platform to Assess Permeability and Barrier Function of Air Exposed Pulmonary Epithelia.

      Carius, Patrick; Dubois, Aurélie; Ajdarirad, Morvarid; Artzy-Schnirman, Arbel; Sznitman, Josué; Schneider-Daum, Nicole; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (Frontiers, 2021-10-06)
      Complex in vitro models, especially those based on human cells and tissues, may successfully reduce or even replace animal models within pre-clinical development of orally inhaled drug products. Microfluidic lung-on-chips are regarded as especially promising models since they allow the culture of lung specific cell types under physiological stimuli including perfusion and air-liquid interface (ALI) conditions within a precisely controlled in vitro environment. Currently, though, such models are not available to a broad user community given their need for sophisticated microfabrication techniques. They further require systematic comparison to well-based filter supports, in analogy to traditional Transwells®. We here present a versatile perfusable platform that combines the advantages of well-based filter supports with the benefits of perfusion, to assess barrier permeability of and aerosol deposition on ALI cultured pulmonary epithelial cells. The platform as well as the required technical accessories can be reproduced via a detailed step-by-step protocol and implemented in typical bio-/pharmaceutical laboratories without specific expertise in microfabrication methods nor the need to buy costly specialized equipment. Calu-3 cells cultured under liquid covered conditions (LCC) inside the platform showed similar development of transepithelial electrical resistance (TEER) over a period of 14 days as cells cultured on a traditional Transwell®. By using a customized deposition chamber, fluorescein sodium was nebulized via a clinically relevant Aerogen® Solo nebulizer onto Calu-3 cells cultured under ALI conditions within the platform. This not only allowed to analyze the transport of fluorescein sodium after ALI deposition under perfusion, but also to compare it to transport under traditional static conditions.
    • A Promiscuous Halogenase for the Derivatization of Flavonoids.

      Kolling, Dominik; Stierhof, Marc; Lasch, Constanze; Myronovskyi, Maksym; Luzhetskyy, Andriy; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (MDPI, 2021-10-14)
      Halogenation often improves the bioactive properties of natural products and is used in pharmaceutical research for the generation of new potential drug leads. High regio- and stereospecificity, simple reaction conditions and straightforward downstream processing are the main advantages of halogenation using enzymatic biocatalysts compared to chemical synthetic approaches. The identification of new promiscuous halogenases for the modification of various natural products is of great interest in modern drug discovery. In this paper, we report the identification of a new promiscuous FAD-dependent halogenase, DklH, from Frankia alni ACN14a. The identified halogenase readily modifies various flavonoid compounds, including those with well-studied biological activities. This halogenase has been demonstrated to modify not only flavones and isoflavones, but also flavonols, flavanones and flavanonols. The structural requirements for DklH substrate recognition were determined using a feeding approach. The homology model of DklH and the mechanism of substrate recognition are also proposed in this paper.
    • Biotechnological production optimization of argyrins - a potent immunomodulatory natural product class.

      Pogorevc, Domen; Müller, Rolf; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (John Wiley & Sons LTD, 2021-11-01)
      Argyrins represent a family of cyclic octapeptides exhibiting promising immunomodulatory activity via inhibiting mitochondrial protein synthesis, which leads to reduced IL-17 production by the T-helper 17 cells. Argyrins are formed by a non-ribosomal peptide synthetase (NRPS), originating from the myxobacterial producer strains Archangium gephyra Ar8082 and Cystobacter sp. SBCb004. In this work, a previously established heterologous production platform was employed to provide evidence of direct D-configured amino acid incorporation by the argyrin assembly line. An adenylation domain of the argyrin NRPS was characterized and shown to have a high preference for D-configured amino acids. Eight novel argyrin derivatives were generated via biosynthetic engineering of the heterologous production system. The system was also optimized to enable formation of methylated argyrin C and D derivatives with improved immunosuppressive activity compared with their unmethylated counterparts. Furthermore, the optimization of cultivation conditions allowed exclusive production of one major derivative at a time, drastically improving the purification process. Importantly, engineering of transcription and translation initiation resulted in a substantially improved production titre reaching 350-400 mg l-1 . The optimized system presented herein thus provides a versatile platform for production of this promising class of immunosuppressants at a scale that should provide sufficient supply for upcoming pre-clinical development.
    • A role for PchHI as the ABC transporter in iron acquisition by the siderophore pyochelin in Pseudomonas aeruginosa.

      Roche, Béatrice; Garcia-Rivera, Mariel A; Normant, Vincent; Kuhn, Lauriane; Hammann, Philippe; Brönstrup, Mark; Mislin, Gaëtan L A; Schalk, Isabelle J; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (John Wiley & Sons LTD, 2021-10-18)
      Iron is an essential nutrient for bacterial growth but poorly bioavailable. Bacteria scavenge ferric iron by synthesizing and secreting siderophores, small compounds with a high affinity for iron. Pyochelin (PCH) is one of the two siderophores produced by the opportunistic pathogen Pseudomonas aeruginosa. After capturing a ferric iron molecule, PCH-Fe is imported back into bacteria first by the outer membrane transporter FptA and then by the inner membrane permease FptX. Here, using molecular biology, 55 Fe uptake assays, and LC-MS/MS quantification, we first find a role for PchHI as the heterodimeric ABC transporter involved in the siderophore-free iron uptake into the bacterial cytoplasm. We also provide the first evidence that PCH is able to reach the bacterial periplasm and cytoplasm when both FptA and FptX are expressed. Finally, we detected an interaction between PchH and FptX, linking the ABC transporter PchHI with the inner permease FptX in the PCH-Fe uptake pathway. These results pave the way for a better understanding of the PCH siderophore pathway, giving future directions to tackle P. aeruginosa infections.
    • Retiboletus (Boletaceae) in northern Thailand: one novel species and two first records

      Chuankid, Boontiya; Vadthanarat, Santhiti; Thongbai, Benjarong; Stadler, Marc; Lumyong, Saisamorn; Hyde, Kevin David; Raspé, Olivier; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2021-01-01)
      Morphological characters and multi-gene phylogenetic analyses were used to identify Retiboletus specimens collected in northern Thailand. Retiboletus brevibasidiatus is described as new to science, whereas R. fuscus and R. nigrogriseus are reported for the first time from Thailand. Retiboletus brevibasidiatus produces medium-sized basidiomes, with a dark blonde to clay pileus and densely reticulate stipe mostly on the upper part with pale yellow to chrome yellow basal mycelium. It is difficult to separate R. brevibasidiatus from other closely related species on the basis of macroscopic characters. However, the new species can be distinguished by microscopic characters, mostly the shorter basidia. The macro- and micro-morphology of the R. fuscus and R. nigrogriseus collections from Thailand fit well with the previous descriptions of materials from China and Japan. Detailed descriptions, molecular phylogeny, and illustrations of the three species are provided.
    • A bipartite element with allele-specific functions safeguards DNA methylation imprints at the Dlk1-Dio3 locus.

      Aronson, Boaz E; Scourzic, Laurianne; Shah, Veevek; Swanzey, Emily; Kloetgen, Andreas; Polyzos, Alexander; Sinha, Abhishek; Azziz, Annabel; Caspi, Inbal; Li, Jiexi; et al. (Elsevier (Cell Press), 2021-10-27)
      Loss of imprinting (LOI) results in severe developmental defects, but the mechanisms preventing LOI remain incompletely understood. Here, we dissect the functional components of the imprinting control region of the essential Dlk1-Dio3 locus (called IG-DMR) in pluripotent stem cells. We demonstrate that the IG-DMR consists of two antagonistic elements: a paternally methylated CpG island that prevents recruitment of TET dioxygenases and a maternally unmethylated non-canonical enhancer that ensures expression of the Gtl2 lncRNA by counteracting de novo DNA methyltransferases. Genetic or epigenetic editing of these elements leads to distinct LOI phenotypes with characteristic alternations of allele-specific gene expression, DNA methylation, and 3D chromatin topology. Although repression of the Gtl2 promoter results in dysregulated imprinting, the stability of LOI phenotypes depends on the IG-DMR, suggesting a functional hierarchy. These findings establish the IG-DMR as a bipartite control element that maintains imprinting by allele-specific restriction of the DNA (de)methylation machinery.
    • Synthesis and Bioactivity of Ancorinoside B, a Marine Diglycosyl Tetramic Acid

      Soliga, Kevin J; Bär, Sofia I; Oberhuber, Natalie; Zeng, Haoxuan; Schrey, Hedda; Schobert, Rainer; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2021-10-19)
      The sponge metabolite ancorinoside B was prepared for the first time in 16 steps and 4% yield. It features a β-d-galactopyranosyl-(1→4)-β-d-glucuronic acid tethered to a d-aspartic acid-derived tetramic acid. Key steps were the synthesis of a fully protected d-lactose derived thioglycoside, its attachment to a C20-aldehyde spacer, functionalization of the latter with a terminal N-(β-ketoacyl)-d-aspartate, and a basic Dieckmann cyclization to close the pyrrolidin-2,4-dione ring with concomitant global deprotection. Ancorinoside B exhibited multiple biological effects of medicinal interest. It inhibited the secretion of the cancer metastasis-relevant matrix metalloproteinases MMP-2 and MMP-9, and also the growth of Staphylococcus aureus biofilms by ca 87% when applied at concentrations as low as 0.5 µg/mL. This concentration is far below its MIC of ca 67 µg/mL and thus unlikely to induce bacterial resistance. It also led to a 67% dispersion of preformed S. aureus biofilms when applied at a concentration of ca 2 µg/mL. Ancorinoside B might thus be an interesting candidate for the control of the general hospital, catheter, or joint protheses infections.
    • Leprosy in wild chimpanzees.

      Hockings, Kimberley J; Mubemba, Benjamin; Avanzi, Charlotte; Pleh, Kamilla; Düx, Ariane; Bersacola, Elena; Bessa, Joana; Ramon, Marina; Metzger, Sonja; Patrono, Livia V; et al. (Nature Research, 2021-10-13)
      Humans are considered as the main host for Mycobacterium leprae1, the aetiological agent of leprosy, but spillover has occurred to other mammals that are now maintenance hosts, such as nine-banded armadillos and red squirrels2,3. Although naturally acquired leprosy has also been described in captive nonhuman primates4-7, the exact origins of infection remain unclear. Here we describe leprosy-like lesions in two wild populations of western chimpanzees (Pan troglodytes verus) in Cantanhez National Park, Guinea-Bissau and Taï National Park, Côte d'Ivoire, West Africa. Longitudinal monitoring of both populations revealed the progression of disease symptoms compatible with advanced leprosy. Screening of faecal and necropsy samples confirmed the presence of M. leprae as the causative agent at each site and phylogenomic comparisons with other strains from humans and other animals show that the chimpanzee strains belong to different and rare genotypes (4N/O and 2F). These findings suggest that M. leprae may be circulating in more wild animals than suspected, either as a result of exposure to humans or other unknown environmental sources.