Now showing items 21-40 of 3294

    • Maioricimonas rarisocia gen. nov., sp. nov., a novel planctomycete isolated from marine sediments close to Mallorca Island.

      Rivas-Marin, Elena; Wiegand, Sandra; Kallscheuer, Nicolai; Jogler, Mareike; Peeters, Stijn H; Heuer, Anja; Jetten, Mike S M; Boedeker, Christian; Rohde, Manfred; Devos, Damien P; et al. (Springer, 2020-06-25)
      Planctomycetes are ubiquitous bacteria with environmental and biotechnological relevance. Axenic cultures of planctomycetal strains are the basis to analyse their unusual biology and largely uncharacterised metabolism in more detail. Here, we describe strain Mal4T isolated from marine sediments close to Palma de Mallorca, Spain. Strain Mal4T displays common planctomycetal features, such as division by polar budding and the presence of fimbriae and crateriform structures on the cell surface. Cell growth was observed at ranges of 10-39 °C (optimum at 31 °C) and pH 6.5-9.0 (optimum at 7.5). The novel strain shows as pear-shaped cells of 2.0 ± 0.2 × 1.4 ± 0.1 µm and is one of the rare examples of orange colony-forming Planctomycetes. Its genome has a size of 7.7 Mb with a G+C content of 63.4%. Phylogenetically, we conclude that strain Mal4T (= DSM 100296T = LMG 29133T) is the type strain representing the type species of a novel genus, for which we propose the name Maioricimonas rarisocia gen. nov., sp. nov.
    • Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function.

      Kurniawan, Henry; Franchina, Davide G; Guerra, Luana; Bonetti, Lynn; -Baguet, Leticia Soriano; Grusdat, Melanie; Schlicker, Lisa; Hunewald, Oliver; Dostert, Catherine; Merz, Myriam P; et al. (Elsevier (Cell Press), 2020-03-25)
      Regulatory T cells (Tregs) maintain immune homeostasis and prevent autoimmunity. Serine stimulates glutathione (GSH) synthesis and feeds into the one-carbon metabolic network (1CMet) essential for effector T cell (Teff) responses. However, serine's functions, linkage to GSH, and role in stress responses in Tregs are unknown. Here, we show, using mice with Treg-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that GSH loss in Tregs alters serine import and synthesis and that the integrity of this feedback loop is critical for Treg suppressive capacity. Although Gclc ablation does not impair Treg differentiation, mutant mice exhibit severe autoimmunity and enhanced anti-tumor responses. Gclc-deficient Tregs show increased serine metabolism, mTOR activation, and proliferation but downregulated FoxP3. Limitation of cellular serine in vitro and in vivo restores FoxP3 expression and suppressive capacity of Gclc-deficient Tregs. Our work reveals an unexpected role for GSH in restricting serine availability to preserve Treg functionality.
    • Discovery of Small-Molecule Stabilizers of 14-3-3 Protein-Protein Interactions via Dynamic Combinatorial Chemistry.

      Hartman, Alwin M; Elgaher, Walid A M; Hertrich, Nathalie; Andrei, Sebastian A; Ottmann, Christian; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Chemical Society (ACS), 2020-02-28)
      Protein-protein interactions (PPIs) play an important role in numerous biological processes such as cell-cycle regulation and multiple diseases. The family of 14-3-3 proteins is an attractive target as they serve as binding partner to various proteins and are therefore capable of regulating their biological activities. Discovering small-molecule modulators, in particular stabilizers, of such complexes via traditional screening approaches is a challenging task. Herein, we pioneered the first application of dynamic combinatorial chemistry (DCC) to a PPI target, to find modulators of 14-3-3 proteins. Evaluation of the amplified hits from the DCC experiments for their binding affinity via surface plasmon resonance (SPR), revealed that the low-micromolar (KD 15-16 μM) acylhydrazones are 14-3-3/synaptopodin PPI stabilizers. Thus, DCC appears to be ideally suited for the discovery of not only modulators but even the more elusive stabilizers of notoriously challenging PPIs.
    • Potential Dental Biofilm Inhibitors: Dynamic Combinatorial Chemistry Affords Sugar-Based Molecules that Target Bacterial Glucosyltransferase.

      Hartman, Alwin M; Jumde, Varsha R; Elgaher, Walid A M; Te Poele, Evelien M; Dijkhuizen, Lubbert; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-VCH, 2020-06-16)
      We applied dynamic combinatorial chemistry (DCC) to find novel ligands of the bacterial virulence factor glucosyltransferase (GTF) 180. GTFs are the major producers of extracellular polysaccharides, which are important factors in the initiation and development of cariogenic dental biofilms. Following a structure-based strategy, we designed a series of 36 glucose- and maltose-based acylhydrazones as substrate mimics. Synthesis of the required mono- and disaccharide-based aldehydes set the stage for DCC experiments. Analysis of the dynamic combinatorial libraries (DCLs) by UPLC-MS revealed major amplification of four compounds in the presence of GTF180. Moreover, we found that derivatives of the glucose-acceptor maltose at the C1-hydroxy group act as glucose-donors and are cleaved by GTF180. The synthesized hits display medium to low binding affinity (KD values of 0.4-10.0 mm) according to surface plasmon resonance. In addition, they were investigated for inhibitory activity in GTF-activity assays. The early-stage DCC study reveals that careful design of DCLs opens up easy access to a broad class of novel compounds that can be developed further as potential inhibitors.
    • Polyhalonitrobutadienes as Versatile Building Blocks for the Biotargeted Synthesis of Substituted N-Heterocyclic Compounds.

      Zapol'skii, Viktor A; Bilitewski, Ursula; Kupiec, Sören R; Ramming, Isabell; Kaufmann, Dieter E; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-06-21)
      Substituted nitrogen heterocycles are structural key units in many important pharmaceuticals. A new synthetic approach towards heterocyclic compounds displaying antibacterial activity against Staphylococcus aureus or cytotoxic activity has been developed. The selective synthesis of a series of 64 new N-heterocycles from the three nitrobutadienes 2-nitroperchloro-1,3-butadiene, 4-bromotetrachloro-2-nitro-1,3-butadiene and (Z)-1,1,4-trichloro-2,4-dinitrobuta-1,3-diene proved feasible. Their reactions with N-, O- and S-nucleophiles provide rapid access to push-pull substituted benzoxazolines, benzimidazolines, imidazolidines, thiazolidinones, pyrazoles, pyrimidines, pyridopyrimidines, benzoquinolines, isothiazoles, dihydroisoxazoles, and thiophenes with unique substitution patterns. Antibacterial activities of 64 synthesized compounds were examined. Additionally, seven compounds (thiazolidinone, nitropyrimidine, indole, pyridopyrimidine, and thiophene derivatives) exhibited a significant cytotoxicity with IC50-values from 1.05 to 20.1 µM. In conclusion, it was demonstrated that polyhalonitrobutadienes have an interesting potential as structural backbones for a variety of highly functionalized, pharmaceutically active heterocycles.
    • Thalassoglobus polymorphus sp. nov., a novel Planctomycete isolated close to a public beach of Mallorca Island.

      Rivas-Marin, Elena; Wiegand, Sandra; Kallscheuer, Nicolai; Jogler, Mareike; Peeters, Stijn H; Heuer, Anja; Jetten, Mike S M; Boedeker, Christian; Rohde, Manfred; Devos, Damien P; et al. (Springer, 2020-06-24)
      Access to axenic cultures is crucial to extend the knowledge of the biology, lifestyle or metabolic capabilities of bacteria from different phyla. The phylum Planctomycetes is an excellent example since its members display an unusual cell biology and complex lifestyles. As a contribution to the current collection of axenic planctomycete cultures, here we describe strain Mal48T isolated from phytoplankton material sampled at the coast of S'Arenal close to Palma de Mallorca (Spain). The isolated strain shows optimal growth at pH 7.0-7.5 and 30 °C and exhibits typical features of Planctomycetes. Cells of the strain are spherical to pear-shaped, divide by polar budding with daughter cells showing the same shape as the mother cell, tend to aggregate, display a stalk and produce matrix or fimbriae. Strain Mal48T showed 95.8% 16S rRNA gene sequence similarity with the recently described Thalassoglobus neptunius KOR42T. The genome sequence of the novel isolate has a size of 6,357,355 bp with a G+C content of 50.3%. A total of 4874 protein-coding genes, 41 tRNA genes and 2 copies of the 16S rRNA gene are encoded in the genome. Based on phylogenetic, morphological and physiological analyses, we conclude that strain Mal48T (= DSM 100737T = LMG 29019T) should be classified as the type strain of a new species in the genus Thalassoglobus, for which the name Thalassoglobus polymorphus sp. nov. is proposed.
    • Enduring Changes in Neuronal Function upon Systemic Inflammation Are NLRP3 Inflammasome Dependent.

      Beyer, Marianna M S; Lonnemann, Niklas; Remus, Anita; Latz, Eicke; Heneka, Michael T; Korte, Martin (Society for Neuroscience, 2020-06-04)
      Neuroinflammation can be caused by various insults to the brain and represents an important pathologic hallmark of neurodegenerative diseases including Alzheimer's disease (AD). Infection-triggered acute systemic inflammation is able to induce neuroinflammation and may negatively affect neuronal morphology, synaptic plasticity, and cognitive function. In contrast to acute effects, persisting consequences for the brain on systemic immune stimulation remain largely unexplored. Here, we report an age-dependent vulnerability of wild-type (WT) mice of either sex toward a systemic immune stimulation by Salmonella typhimurium lipopolysaccharide (LPS). Decreased neuronal complexity three months after peripheral immune stimulation is accompanied by impairment in long-term potentiation (LTP) and spatial learning. Aged APP/PS1 mice reveal an increased sensitivity also to LPS of Escherichia coli, which had no effect in WT mice. We further report that these effects are mediated by NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation, since the genetic ablation and pharmacological inhibition using the NLRP3 inhibitor MCC950 rescue the morphological and electrophysiological phenotype.SIGNIFICANCE STATEMENT Acute peripheral immune stimulation has been shown to have both positive and negative effects on Aβ deposition. Improvements or worsening may be possible in acute inflammation. However, there is still no evidence of effects longer than a month after stimulation. The data are pointing to an important role of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome for mediating the long-term consequences of systemic immune stimulation, which in addition turns out to be age dependent.
    • Caulifigura coniformis gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from a red biofilm sampled in a hydrothermal area.

      Kallscheuer, Nicolai; Wiegand, Sandra; Boedeker, Christian; Peeters, Stijn H; Jogler, Mareike; Heuer, Anja; Jetten, Mike S M; Rohde, Manfred; Jogler, Christian; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2020-06-24)
      Pan44T, a novel strain belonging to the phylum Planctomycetes, was isolated from a red biofilm in a hydrothermal area close to the island Panarea in the Tyrrhenian Sea north of Sicily, Italy. The strain forms white colonies on solid medium and displays the following characteristics: cell division by budding, formation of rosettes, presence of matrix or fimbriae and long stalks. The cell surface has an interesting and characteristic texture made up of triangles and rectangles, which leads to a pine cone-like morphology of the strain. Strain Pan44T is mesophilic (temperature optimum 26 °C), slightly alkaliphilic (pH optimum 8.0), aerobic and heterotrophic. The strain has a genome size of 6.76 Mb with a G + C content of 63.2%. Phylogenetically, the strain is a member of the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. Our analysis supports delineation of strain Pan44T from all known genera in this family, hence, we propose to assign it to a novel species within a novel genus, for which we propose the name Caulifigura coniformis gen. nov., sp. nov., represented by Pan44T (DSM 29405T = LMG 29788T) as the type strain.
    • A decade of advances in transposon-insertion sequencing.

      Cain, Amy K; Barquist, Lars; Goodman, Andrew L; Paulsen, Ian T; Parkhill, Julian; van Opijnen, Tim; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (Springer Nature, 2020-06-12)
      It has been 10 years since the introduction of modern transposon-insertion sequencing (TIS) methods, which combine genome-wide transposon mutagenesis with high-throughput sequencing to estimate the fitness contribution or essentiality of each genetic component in a bacterial genome. Four TIS variations were published in 2009: transposon sequencing (Tn-Seq), transposon-directed insertion site sequencing (TraDIS), insertion sequencing (INSeq) and high-throughput insertion tracking by deep sequencing (HITS). TIS has since become an important tool for molecular microbiologists, being one of the few genome-wide techniques that directly links phenotype to genotype and ultimately can assign gene function. In this Review, we discuss the recent applications of TIS to answer overarching biological questions. We explore emerging and multidisciplinary methods that build on TIS, with an eye towards future applications.
    • A shift of dynamic equilibrium between the KIT active and inactive states causes drug resistance.

      Srikakulam, Sanjay K; Bastys, Tomas; Kalinina, Olga V; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley, 2020-06-12)
      Integrative bioinformatics is an emerging field in the big data era, offering a steadily increasing number of algorithms and analysis tools. However, for researchers in experimental life sciences it is often difficult to follow and properly apply the bioinformatical methods in order to unravel the complexity and systemic effects of omics data. Here, we present an integrative bioinformatics pipeline to decipher crucial biological insights from global transcriptome profiling data to validate innovative therapeutics. It is available as a web application for an interactive and simplified analysis without the need for programming skills or deep bioinformatics background. The approach was applied to an ex vivo cardiac model treated with natural anti-fibrotic compounds and we obtained new mechanistic insights into their anti-fibrotic action and molecular interplay with miRNAs in cardiac fibrosis. Several gene pathways associated with proliferation, extracellular matrix processes and wound healing were altered, and we could identify micro (mi) RNA-21-5p and miRNA-223-3p as key molecular components related to the anti-fibrotic treatment. Importantly, our pipeline is not restricted to a specific cell type or disease and can be broadly applied to better understand the unprecedented level of complexity in big data research.
    • Plugging Small RNAs into the Network.

      Barquist, Lars; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (ASM, 2020-06-02)
      Small RNAs (sRNAs) have been discovered in every bacterium examined and have been shown to play important roles in the regulation of a diverse range of behaviors, from metabolism to infection. However, despite a wide range of available techniques for discovering and validating sRNA regulatory interactions, only a minority of these molecules have been well characterized. In part, this is due to the nature of posttranscriptional regulation: the activity of an sRNA depends on the state of the transcriptome as a whole, so characterization is best carried out under the conditions in which it is naturally active. In this issue of mSystems, Arrieta-Ortiz and colleagues (M. L. Arrieta-Ortiz, C. Hafemeister, B. Shuster, N. S. Baliga, et al., mSystems 5:e00057-20, 2020, https://doi.org/10.1128/mSystems.00057-20) present a network inference approach based on estimating sRNA activity across transcriptomic compendia. This shows promise not only for identifying new sRNA regulatory interactions but also for pinpointing the conditions in which these interactions occur, providing a new avenue toward functional characterization of sRNAs.
    • Sex-Specific Regulation of Inflammation and Metabolic Syndrome in Obesity.

      Ter Horst, Rob; van den Munckhof, Inge C L; Schraa, Kiki; Aguirre-Gamboa, Raul; Jaeger, Martin; Smeekens, Sanne P; Brand, Tessa; Lemmers, Heidi; Dijkstra, Helga; Galesloot, Tessel E; et al. (Lippincott, Williams & Wilkins, 2020-05-28)
      Metabolic dysregulation and inflammation are important consequences of obesity and impact susceptibility to cardiovascular disease. Anti-inflammatory therapy in cardiovascular disease is being developed under the assumption that inflammatory pathways are identical in women and men, but it is not known if this is indeed the case. In this study, we assessed the sex-specific relation between inflammation and metabolic dysregulation in obesity. Approach and Results: Three hundred two individuals were included, half with a BMI 27 to 30 kg/m2 and half with a BMI>30 kg/m2, 45% were women. The presence of metabolic syndrome was assessed according to the National Cholesterol Education Program-ATPIII criteria, and inflammation was studied using circulating markers of inflammation, cell counts, and ex vivo cytokine production capacity of isolated immune cells. Additionally, lipidomic and metabolomic data were gathered, and subcutaneous fat biopsies were histologically assessed. Metabolic syndrome is associated with an increased inflammatory profile that profoundly differs between women and men: women with metabolic syndrome show a lower concentration of the anti-inflammatory adiponectin, whereas men show increased levels of several pro-inflammatory markers such as IL (interleukin)-6 and leptin. Adipose tissue inflammation showed similar sex-specific associations with these markers. Peripheral blood mononuclear cells isolated from men, but not women, with metabolic syndrome display enhanced cytokine production capacity.
    • A Single-Center Prospective Cohort Study on Postsplenectomy Sepsis and its Prevention.

      Rieg, Siegbert; Bechet, Lena; Naujoks, Kai; Hromek, Julia; Lange, Berit; Juzek-Küpper, Marc-Fabian; Stete, Katarina; Müller, Matthias C; Jost, Insa; Kern, Winfried V; et al. (Oxford University Press, 2020-02-13)
      A total of 459 asplenic patients were enrolled, and 426 patients were followed prospectively over a median period of 2.9 years. Pneumococcal vaccine uptake within 3 months of splenectomy or first diagnosis of asplenia was 27% vs 71% among delayed study entry and early study entry patients, respectively (P < .001). Forty-four episodes of severe sepsis or septic shock occurred in study patients: 22 after study entry and 22 before study entry. Streptococcus pneumoniae was more frequent among sepsis episodes that occurred before study entry (8/22) than after study entry (1/22 episodes). For episodes occurring after study entry, only a higher Charlson comorbidity index score was significantly associated with severe sepsis/septic shock postsplenectomy.
    • Mesenchymal to epithelial transition driven by canine distemper virus infection of canine histiocytic sarcoma cells contributes to a reduced cell motility in vitro.

      Armando, Federico; Gambini, Matteo; Corradi, Attilio; Becker, Kathrin; Marek, Katarzyna; Pfankuche, Vanessa Maria; Mergani, Ahmed Elmonastir; Brogden, Graham; de Buhr, Nicole; Von Köckritz-Blickwede, Maren; et al. (Blackwell Publishing, 2020-07-06)
      Sarcomas especially of histiocytic origin often possess a poor prognosis and response to conventional therapies. Interestingly, tumours undergoing mesenchymal to epithelial transition (MET) are often associated with a favourable clinical outcome. This process is characterized by an increased expression of epithelial markers leading to a decreased invasion and metastatic rate. Based on the failure of conventional therapies, viral oncolysis might represent a promising alternative with canine distemper virus (CDV) as a possible candidate. This study hypothesizes that a CDV infection of canine histiocytic sarcoma cells (DH82 cells) triggers the MET process leading to a decreased cellular motility. Immunofluorescence and immunoblotting were used to investigate the expression of epithelial and mesenchymal markers followed by scratch assay and an invasion assay as functional confirmation. Furthermore, microarray data were analysed for genes associated with the MET process, invasion and angiogenesis. CDV-infected cells exhibited an increased expression of epithelial markers such as E-cadherin and cytokeratin 8 compared to controls, indicating a MET process. This was accompanied by a reduced cell motility and invasiveness. Summarized, these results suggest that CDV infection of DH82 cells triggers the MET process by an increased expression of epithelial markers resulting in a decreased cell motility in vitro.
    • Integrative Bioinformatic Analyses of Global Transcriptome Data Decipher Novel Molecular Insights into Cardiac Anti-Fibrotic Therapies.

      Fuchs, Maximilian; Kreutzer, Fabian Philipp; Kapsner, Lorenz A; Mitzka, Saskia; Just, Annette; Perbellini, Filippo; Terracciano, Cesare M; Xiao, Ke; Geffers, Robert; Bogdan, Christian; et al. (MDPI, 2020-07-02)
      Integrative bioinformatics is an emerging field in the big data era, offering a steadily increasing number of algorithms and analysis tools. However, for researchers in experimental life sciences it is often difficult to follow and properly apply the bioinformatical methods in order to unravel the complexity and systemic effects of omics data. Here, we present an integrative bioinformatics pipeline to decipher crucial biological insights from global transcriptome profiling data to validate innovative therapeutics. It is available as a web application for an interactive and simplified analysis without the need for programming skills or deep bioinformatics background. The approach was applied to an ex vivo cardiac model treated with natural anti-fibrotic compounds and we obtained new mechanistic insights into their anti-fibrotic action and molecular interplay with miRNAs in cardiac fibrosis. Several gene pathways associated with proliferation, extracellular matrix processes and wound healing were altered, and we could identify micro (mi) RNA-21-5p and miRNA-223-3p as key molecular components related to the anti-fibrotic treatment. Importantly, our pipeline is not restricted to a specific cell type or disease and can be broadly applied to better understand the unprecedented level of complexity in big data research.
    • Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity.

      Jayachandran, Rajesh; Gumienny, Aleksandra; Bolinger, Beatrice; Ruehl, Sebastian; Lang, Mathias Jakob; Fucile, Geoffrey; Mazumder, Saumyabrata; Tchang, Vincent; Woischnig, Anne-Kathrin; Stiess, Michael; et al. (Elsevier (Cell Press), 2019-01-02)
      The ability of the immune system to discriminate self from non-self is essential for eradicating microbial pathogens but is also responsible for allograft rejection. Whether it is possible to selectively suppress alloresponses while maintaining anti-pathogen immunity remains unknown. We found that mice deficient in coronin 1, a regulator of naive T cell homeostasis, fully retained allografts while maintaining T cell-specific responses against microbial pathogens. Mechanistically, coronin 1-deficiency increased cyclic adenosine monophosphate (cAMP) concentrations to suppress allo-specific T cell responses. Costimulation induced on microbe-infected antigen presenting cells was able to overcome cAMP-mediated immunosuppression to maintain anti-pathogen immunity. In vivo pharmacological modulation of this pathway or a prior transfer of coronin 1-deficient T cells actively suppressed allograft rejection. These results define a coronin 1-dependent regulatory axis in T cells important for allograft rejection and suggest that modulation of this pathway may be a promising approach to achieve long-term acceptance of mismatched allografts.
    • Enteric Murine Ganglionitis Induced by Autoimmune CD8 T Cells Mimics Human Gastrointestinal Dysmotility.

      Sanchez-Ruiz, Monica; Brunn, Anna; Montesinos-Rongen, Manuel; Rudroff, Claudia; Hartmann, Melanie; Schlüter, Dirk; Pfitzer, Gabriele; Deckert, Martina; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2018-12-27)
      Inflammatory bowel diseases frequently cause gastrointestinal dysmotility, suggesting that they may also affect the enteric nervous system. So far, the precise mechanisms that lead to gastrointestinal dysmotility in inflammatory bowel diseases have not been elucidated. To determine the effect of CD8 T cells on gastrointestinal motility, transgenic mice expressing ovalbumin on enteric neurons were generated. In these mice, adoptive transfer of ovalbumin-specific OT-I CD8 T cells induced severe enteric ganglionitis. CD8 T cells homed to submucosal and myenteric plexus neurons, 60% of which were lost, clinically resulting in severely impaired gastrointestinal transition. Anti-interferon-γ treatment rescued neurons by preventing their up-regulation of major histocompatibility complex class I antigen, thus preserving gut motility. These preclinical murine data translated well into human gastrointestinal dysmotility. In a series of 30 colonic biopsy specimens from patients with gastrointestinal dysmotility, CD8 T cell-mediated ganglionitis was detected that was followed by severe loss of enteric neurons (74.8%). Together, the preclinical and clinical data support the concept that autoimmune CD8 T cells play an important pathogenetic role in gastrointestinal dysmotility and may destroy enteric neurons.
    • Vibrational spectroscopic imaging and live cell video microscopy for studying differentiation of primary human alveolar epithelial cells.

      Vukosavljevic, Branko; Hittinger, Marius; Hachmeister, Henning; Pilger, Christian; Murgia, Xabier; Gepp, Michael M; Gentile, Luca; Huwer, Hanno; Schneider-Daum, Nicole; Huser, Thomas; et al. (Wiley-VCH, 2019-02-20)
    • The ATGL lipase cooperates with ABHD5 to mobilize lipids for hepatitis C virus assembly.

      Vieyres, Gabrielle; Reichert, Isabelle; Carpentier, Arnaud; Vondran, Florian W R; Pietschmann, Thomas; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (PLOS, 2020-06-15)
      Lipid droplets are essential cellular organelles for storage of fatty acids and triglycerides. The hepatitis C virus (HCV) translocates several of its proteins onto their surface and uses them for production of infectious progeny. We recently reported that the lipid droplet-associated α/β hydrolase domain-containing protein 5 (ABHD5/CGI-58) participates in HCV assembly by mobilizing lipid droplet-associated lipids. However, ABHD5 itself has no lipase activity and it remained unclear how ABHD5 mediates lipolysis critical for HCV assembly. Here, we identify adipose triglyceride lipase (ATGL) as ABHD5 effector and new host factor involved in the hepatic lipid droplet degradation as well as in HCV and lipoprotein morphogenesis. Modulation of ATGL protein expression and lipase activity controlled lipid droplet lipolysis and virus production. ABHD4 is a paralog of ABHD5 unable to activate ATGL or support HCV assembly and lipid droplet lipolysis. Grafting ABHD5 residues critical for activation of ATGL onto ABHD4 restored the interaction between lipase and co-lipase and bestowed the pro-viral and lipolytic functions onto the engineered protein. Congruently, mutation of the predicted ABHD5 protein interface to ATGL ablated ABHD5 functions in lipid droplet lipolysis and HCV assembly. Interestingly, minor alleles of ABHD5 and ATGL associated with neutral lipid storage diseases in human, are also impaired in lipid droplet lipolysis and their pro-viral functions. Collectively, these results show that ABHD5 cooperates with ATGL to mobilize triglycerides for HCV infectious virus production. Moreover, viral manipulation of lipid droplet homeostasis via the ABHD5-ATGL axis, akin to natural genetic variation in these proteins, emerges as a possible mechanism by which chronic HCV infection causes liver steatosis.
    • Discovery of a new species of the Hypoxylon rubiginosum complex from Iran and antagonistic activities of spp. against the Ash Dieback pathogen, Hymenoscyphus fraxineus,, in dual culture.

      Pourmoghaddam, Mohammad Javad; Lambert, Christopher; Surup, Frank; Khodaparast, Seyed Akbar; Krisai-Greilhuber, Irmgard; Voglmayr, Hermann; Stadler, Marc; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (PenSoft Publishers, 2020-04-24)
      During a survey of xylarialean fungi in Northern Iran, several specimens that showed affinities to the Hypoxylon rubiginosum complex were collected and cultured. A comparison of their morphological characters, combined with a chemotaxonomic study based on high performance liquid chromatography, coupled with diode array detection and mass spectrometry (HPLC-DAD/MS) and a multi-locus phylogeny based on ITS, LSU, rbp2 and tub2 DNA sequences, revealed a new species here described as Hypoxylon guilanense. In addition, Hypoxylon rubiginosumsensu stricto was also encountered. Concurrently, an endophytic isolate of the latter species showed strong antagonistic activities against the Ash Dieback pathogen, Hymenoscyphus fraxineus, in a dual culture assay in our laboratory. Therefore, we decided to test the new Iranian fungi for antagonistic activities against the pathogen, along with several cultures of other Hypoxylon species that are related to H. rubiginosum. Our results suggest that the antagonistic effects of Hypoxylon spp. against Hym. fraxineus are widespread and that they are due to the production of antifungal phomopsidin derivatives in the presence of the pathogen.